
Computer Science III (22C:30, 22C:115)
Project 2, Due: 11/13/02, 5 pm

1. Introduction.

In this programming project you will develop a new implementation of the graph class with

additional functionality for graph traversal. You will test the new implementation is various

ways and compare the efficiency of the new and old implementations.

2. Adjacency List Representation.

Implement a class called graphAL using the adjacency list representation discussed in class.

Make sure that your new implementation provides all the functionality provided by the graph

class implemented as part of Project 1. Specifically, the += operator and the -= operator should

continue to behave as they did in the graph class. The function get Neighbors should be

modified slightly, in that instead of returning a vector of neighboring nodes, the function should

now return a linked list of neighboring nodes.

While most details of the implementation should be clear to you from working on Project 1 and

our in-class discussion of adjacency lists, there is one issue that needs to be raised. Recall that

the adjacency list representation consists of a vector of nodes, each node in the vector pointing

to a list of neighboring nodes. The question is how large should this vector of nodes be and what

should be done when it fills up. You should essentially do what you did in Project 1. That is,

start with an empty vector and increase its size to 2 times its original size plus one, whenever

an extra slot is needed for a new node.

3. Graph Traversals

Now add three functions to implementation of graphAL: bfs, dfs, and shortestPath. The

functions should have the following headers:

bool bfs(const node & source, apvector<int> & distances, apvector<node> & bfsTree);

bool dfs(const node & source, apvector<int> & distances, apvector<node> & bfsTree);

bool shortestPath(const node & source, const node & dest, apvector<node> & path);

I will now describe each of these functions briefly.

• The function bfs takes a source node and performs breadth-first search to compute a breadth-first
search tree, along with associated distances in the graph of nodes from the source. These two
pieces of information are returned as reference parameters by the function. The length of both
the vectors, distances as well as bfsTree, should be identical and should be equal to the number
of nodes in the graph. Information in both vectors should be ordered identically; meaning that
if the ith slot in bfsTree contains the parent information for a certain node, then the ith slot in
distances should contain the distance information for the same node. Besides this, there are no
other constraints on how this information is organized. You should note that not all nodes may
be reachable from the source node. In particular, the graph may consist of several pieces such
that there are no edges between nodes in one piece and nodes in a different piece. Such pieces are
called the connected components of a graph. Only the nodes in the same connected component as
the source node are reachable from it. For nodes that are not reachable from the source node, the
entry in the distances vector should be -1 and the parent pointer in bfsTree should be NULL. This
will make it easy to compute the set of nodes, unreachable from the source node, by examining
either distances or bfsTree. Finally, bfs returns false if the source node does not exist in the
graph; true otherwise.

• The dfs function provides functionality that is very similar to that of bfs. It performs a depth-first

search of the graph and computes a depth-first search tree along with associated distances. Note

1



that, while the distances computed by bfs are shortest distances in the graph, this is not true of
the distances computed by dfs.

• The function shortestPath takes a source node and a destination node and returns a shortest
path between the two nodes. This information is returned as a vector of nodes, such that the
first node in this vector is the source node and the last node is the destination node. If either
the source node or the destination node is missing from the graph the function returns false;
otherwise the function returns true. It is possible that there is no path between the source node
and the destination node (this happens if they belong to different connected components). In this
case, the length of the returned path vector should be 0.

For bfs use the queue class defined in the Standard Template Library. It is a little easier to implement
dfs recursively, so that is what you should do rather than use a stack-based implementation.

4. Testing the Graph Traversal Functions.

You should test the newly implemented graph traversal functions in two ways. First, enhance the driver
program from Project 1, so that it can process an input line of the form:

S str1 str2

It should respond to such a line of input by printing out a shortest path from the node with name str1 to
the node with name str2. In other words, it should print in order the names of the nodes in a shortest
path starting with str1 and ending with str2. If str1 or str2 are not valid node names, it should
produce an “error message”. If there is no path from str1 to str2, it should produce a message saying
so.

Second, enhance the ladders program from Project 1 so that it can also read an input line of the
form:

L w1 w2

and respond by printing out the shortest “ladder” from word w1 to word w2.
Both of the above tasks can be achieved by just making an appropriate call to the shortestPath function
and printing the vector it returns.

5. BFS versus DFS.

Write a program called that performs an experiment to compare the performance of breadth-first search
and depth-first search on the ladders graph as follows.

1. Start by reading input from words.dat and building the ladders graph.

2. Then, pick a pair of 5-letter words randomly, say w1 and w2. Compute the length of the path
between w1 and w2 returned by bfs and the length of the path between w1 and w2 returned by
dfs.

3. Repeat the above step 1000 times and after all 1000 trials of the experiment are completed, report
the average length of a path returned by bfs and report the average length of a path returned by
dfs.

So your program reads input from words.dat and produces as output two numbers.

6. Comparison of the Two Implementations.

Now I want you to perform an experiment to compare the two graph implementations: graph and
graphAL. Specifically, start by adding the function bfs to the graph class. This is easy because the
function bfs that you implemented as part of the graphAL class can be used with little or no modification
in the graph class.

Then implement two versions of a function generateRandomGraph that generates a random graph.
These functions are not part of any class and have the following function header:
graph<int> generateRandomGraph(int n, float p);

graphAL<int> generateRandomGraph(int n, float p);

The two functions are identical in all ways except that the first function returns a graph object, while the
second function returns a graphAL object. Both functions, take a positive integer n and a real number p
in the range 0 through 1, and return a graph with n nodes and edges generated with probability p. To

2



generate edges of a graph with probability p, consider each pair of nodes and with probability p connect
them by an edge. This can be done easily using the RandReal function from the RandGen class. Notice
that when p = 0 we get a graph with no edges and as we increase p the number of edges in the graph
increases until, when p = 1, the graph has all possible edges. Also notice that generateRandomGraph

returns graph objects whose nodes are identified by integers. Since it does not really matter how the
nodes are identified, they can be numbered 1, 2, . . . , n.

For the experiment fix n = 1000 and use values of p = 1/20, 2/20, 3/20, . . . , 19/20, 20/20. For each
n and p, generate 10 random graph objects and 10 random graphAL objects. Time the execution of
bfs on each of the 10 graph objects and report the average time of execution. It does not matter what
source you use for bfs, so you might as well use node 1. Similarly, time the execution of bfs on each of
the 10 graphAL objects and report the average time of execution. So your program reads no input and
produces as output two sets of 20 running times, one set of twenty numbers for bfs implemented as part
of the graph class and another set of twenty numbers for bfs implemented as part of the graphAL class.

9. Some advice.

This project requires that you integrate several concepts that we have explored in class and it is my
expectation that it will take you all of 3 weeks to complete it. So please start early and do not hesitate
to ask me questions as you make progress.

Here is my advice on how to break up your work on the project into stages.

Stage 1 Implement the graphAL class one function at a time. Use the driver program from Project 1 to
test the functions in this class. Specifically, after implementing each function, compile your code,
and test the new function using the driver program.

Stage 2 Implement bfs for the graphAL class; compile and test your code. Implement the shortestPath
function; compile and test your code. Copy the implementation of bfs from the graphAL class
into the graph class. Make any modifications that are necessary and compile and test the bfs in
the graph class.

Stage 3 Implement dfs for the graphAL class; compile and test your code.

Stage 4 Perform the various experiments. Give yourself enough time just to run the experiments.

You should break up work within each stage into pieces and make sure that you implement a piece
and test it before moving on to the next piece. You will maximize your grade on this project by using
this approach. This is because, it is better to turn in a working program that does a few of the tasks
well, rather than a large chunk of code that attempts to do everything, but does nothing.

10. Overall organization.

As in Project 1 submit the following files: graph.h, graph.cxx, node.h, node.cxx, edge.h, edge.cxx,
driver.cxx, and ladders.cxx. The new files, specific to this project are: graphAL.h, graphAL.cxx

which contain the graphAL class; bfsVersusDfs.cxx which contains the experiment comparing bfs to
dfs; newBfsVersusOldBfs.cxx which contains the experiment comparing bfs in the graph class to bfs

in the graphAL class.
In addition to these files that contain your code, you should also have a README file that clearly tells

us about any known errors your programs have and also lists all required features not implemented.
All of these files should be in a directory that you will have to submit by 5 pm on 11/13/02.

3


