22C:253 Algorithms for Discrete Optimization

Scribe: Narendra DP

October 21, 2002

We will quickly wrap up our discussion of the problem Scheduling on Unrelated Parallel Machines (SUPM) that started last lecture. We now have a solution (T^{\star}, X^{\star}) to $\mathrm{LP}+(\mathrm{C})$. We showed that at most m jobs are assigned fractionally in x^{\star}. There is a simple way in which these fractional jobs can be rounded.

Consider the bipartite graph $G=(A, B, E)$ such that A is the set of machines which are assigned some fractional jobs, B is the set of jobs assigned fractionally, and E contains edges $\{i, j\}$, where $i \in A, j \in B$ and $x_{i j} \in(0,1)$. This is a bipartite graph and it can be shown that this contains a matching in which all jobs are matched. This is left as an exercise for you.

As mentioned in the last lecture, in order to "round" x^{\star} given the above property, we simply assign each job to the machine it is matched with. This increases the makespan from T^{\star} to at most $2 \cdot T^{\star} \leq 2 \cdot O P T$.

Family of Tight Examples. Let $n=m^{2}-m+1$ where n is the number of jobs and m denote the number of machines. Suppose job-1, j_{1}, has a processing time m on all machines and any other job, j_{i}, can be processed in unit time on any machine.

The $O P T$ for this problem instance is m. Say, j_{1} is assigned to m_{1} and completes in time m. The remaining $m^{2}-m$ jobs are assigned so that each of the remaining $m-1$ machines get m jobs. In fact, the above solution is a feasible solution for the LP. Let us consider the following feasible solution.

- Split j_{1} into unit sized jobs and assign one unit to each machine.
- Of the remaining jobs, assign $(m-1)$ of these to each machine.

This solution is a vertex of the feasibility polytope and forms a feasible solution with makespan m. If this solution is returned by the LP relaxation, then rounding will assign j_{1} to one of the machines and increase the makespan to $2 m-1$.

CAPACITATED VERTEX COVER (CapVC)

INPUT: Let $G=(V, E)$ is a graph with vertex weights $w_{v} \in Q^{+}$and vertex capacities $k_{v} \in Z^{+}$. OUTPUT: A vertex cover defined by a function, $x: V \rightarrow N_{0}$ such that
(i) There is an orientation of the edges such that the number of edges coming into any vertex is atmost $k_{v} \cdot x(v)$.
(ii) $\sum_{v \in V} w_{v} \cdot x(v)$ is minimized.

Status of the Problem: A factor-2 approximation can be obtained by using dependent rounding and an alternate factor-2 approximation algorithm can be obtained using the primal-dual framework. We will discuss a simple factor-4 algorithm that uses a deterministic rounding technique and a factor-3 approximation algorithm using dependent rounding method. Given below is the integer program corresponding to CapVC. The variables used are: $x_{v} \in N_{0}$ for each $v \in V$ and $y_{e, v} \in\{0,1\}$ for each edge $e \in E$ and $v \in e . y_{e, v}$ indicates if vertex v covers e.

$$
\operatorname{minimize} \sum_{v \in V} w_{v} \cdot x_{v}
$$

such that

$$
\begin{aligned}
y_{e, v}+y_{e, u} & \geq 1 \text { for each edge } e=\{u, v\} \in E \\
\sum_{e: v \in e} y_{e, v} & \leq k_{v} \cdot x_{v} \text { for each } v \in V \\
x_{v} & \in N_{0} \\
y_{e, v} & \in\{0,1\}
\end{aligned}
$$

The corresponding LP relaxation replaces the constraints $y_{e, v} \in\{0,1\}$ by $y_{e, v} \geq 0$ and $x_{v} \in N_{0}$ by $x_{v} \geq 0$. Any feasible solution to the above IP satisfies the following property:

$$
\text { If } y_{e, v}=1 \text { for some edge } e: v \in e, \text { then } x_{v} \geq 1 \text {. }
$$

This property can be enforced in the LP relaxation problem by adding the following linear constraint

$$
x_{v} \geq y_{e, v} \quad \text { for each } \quad e: v \in e
$$

Deterministic Rounding Algorithm. Here is a deterministic rounding algorithm that yields a factor-4 approximation.

1. Solve the LP-relaxation to obtain the solution (X, Y).
2. For each $y_{e, v} \geq \frac{1}{2}, \quad y_{e, v}^{\star}=1$. For all other $y_{e, v}$, set $y_{e, v}^{\star}=0$.
3. Set

$$
\begin{equation*}
x_{v}^{\star}=\left\lceil\frac{\sum_{e: v \in e} y_{e, v}^{\star}}{k_{v}}\right\rceil \tag{1}
\end{equation*}
$$

Claim: This algorithm produces a factor-4 approximation algorithm.
Proof: We know that $y_{e, v}^{\star} \leq 2 y_{e, v} \forall e \in E, v \in e$.
And we want to show that: $x_{v}^{\star} \leq 4 x_{v} \quad \forall v \in V$.
Since,

$$
y_{e, v}^{\star} \leq 2 \cdot y_{e, v}
$$

we get,

$$
\begin{equation*}
y_{v}^{\star}=\sum_{e: v \in e} y_{e, v}^{\star} \leq 2 \cdot \sum_{e: v \in e} y_{e, v} \leq 2 \cdot k_{v} \cdot x_{v} \tag{2}
\end{equation*}
$$

Let,

$$
\begin{equation*}
y_{v}^{\star}=a k_{v}+b \quad \forall a, b \in I, a \geq 0, \quad 0 \leq b \leq k_{v} . \tag{3}
\end{equation*}
$$

So,

$$
\begin{equation*}
x_{v} \geq \frac{a k_{v}+b}{2 k_{v}}=\frac{a}{2}+\frac{b}{2 k_{v}} \tag{4}
\end{equation*}
$$

Now using (1) and (3),

$$
\begin{equation*}
x_{v}^{\star}=\left\lceil\frac{y_{v}^{\star}}{k_{v}}\right\rceil \leq a+1 \tag{5}
\end{equation*}
$$

Therefore, if we can show that

$$
(a+1) \leq 4\left(\frac{a}{2}+\frac{b}{2 k_{v}}\right) \leq 2 a+\frac{2 b}{k_{v}}
$$

we will be done.
Now, RHS $=2 a+\frac{2 b}{k_{v}}$ If $a \geq 1$ then RHS \geq LHS. If $a=0$, then $y_{v}^{\star} \leq k_{v}$. This implies that $x_{v}^{\star} \in\{0,1\}$. If $x_{v}^{\star}=0$, then we are done. If $x_{v}^{\star}=1$, then $y_{v}^{\star}=1$ Hence, $y_{e, v}^{\star}=1$ for some edge $e: v \in e$. This implies $y_{e, v} \geq \frac{1}{2}$ for some $e: v \in e$. Therefore, $x_{v} \geq \frac{1}{2}$ by the constraint added to the LP relaxation. Hence, $x_{v}^{\star} \leq 4 x_{v}$.

