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We will quickly wrap up our discussion of the problem Scheduling on Unrelated Parallel Machines
(SUPM) that started last lecture. We now have a solution (7%, X*) to LP + (C). We showed that
at most m jobs are assigned fractionally in x*. There is a simple way in which these fractional jobs
can be rounded.

Consider the bipartite graph G = (A, B, F) such that A is the set of machines which are
assigned some fractional jobs, B is the set of jobs assigned fractionally, and E contains edges {1, j},
where i € A, j € B and z;; € (0,1). This is a bipartite graph and it can be shown that this
contains a matching in which all jobs are matched. This is left as an exercise for you.

As mentioned in the last lecture, in order to “round” z* given the above property, we simply
assign each job to the machine it is matched with. This increases the makespan from T to at most
2-T*<2-0OPT.

Family of Tight Examples. Let n = m? —m + 1 where n is the number of jobs and m denote
the number of machines. Suppose job-1, j1, has a processing time m on all machines and any other
job, j;, can be processed in unit time on any machine.

The OPT for this problem instance is m. Say, ji is assigned to m; and completes in time m.
The remaining m? — m jobs are assigned so that each of the remaining m — 1 machines get m jobs.
In fact, the above solution is a feasible solution for the LP. Let us consider the following feasible
solution.

e Split j; into unit sized jobs and assign one unit to each machine.
e Of the remaining jobs, assign (m — 1) of these to each machine.

This solution is a vertex of the feasibility polytope and forms a feasible solution with makespan
m. If this solution is returned by the LP relaxation, then rounding will assign j; to one of the
machines and increase the makespan to 2m — 1.

CAPACITATED VERTEX COVER (CapVC)
INPUT: Let G = (V, E) is a graph with vertex weights w, € Q1 and vertex capacities k, € Z+.
OUTPUT: A vertex cover defined by a function, x : V' — Ny such that

(i) There is an orientation of the edges such that the number of edges coming into any vertex is
atmost k, - z(v).

(ii) Y yey wy - x(v) is minimized.



Status of the Problem: A factor-2 approximation can be obtained by using dependent rounding and
an alternate factor-2 approximation algorithm can be obtained using the primal-dual framework.
We will discuss a simple factor-4 algorithm that uses a deterministic rounding technique and a
factor-3 approximation algorithm using dependent rounding method. Given below is the integer
program corresponding to CapVC. The variables used are: z, € Ny for each v € V and y., € {0,1}
for each edge e € E/ and v € e. Y., indicates if vertex v covers e.

minimize E Wy * Ty

veV
such that
Yew + Yen > 1 for each edge e = {u,v} € £
Z Yew < ky- -z, foreach veV
ewvee
Ty € NO
ye,v G {0? 1}

The corresponding LP relaxation replaces the constraints y., € {0,1} by ye, > 0 and z, € Ny by

Zy > 0. Any feasible solution to the above IP satisfies the following property:
If yenw = 1 for some edge e : v € e, then x, > 1.

This property can be enforced in the LP relaxation problem by adding the following linear constraint

Ty > Yen foreach e:vee

Deterministic Rounding Algorithm. Here is a deterministic rounding algorithm that yields
a factor-4 approximation.

1. Solve the LP-relaxation to obtain the solution (X,Y).
2. For each y., > %, Yz, = 1. For all other y.,, set y;, =0.

3. Set > .
* ewee Yew
e 1)

Claim: This algorithm produces a factor—4 approximation algorithm.

Proof: We know that y;, < 2y., Ve € E, v € e.
And we want to show that: 2} <4z, YveV.

Since,
Yew <2 Yew
we get,
Yo = D Uiw < 203 Yew S 2 kyo (2)
ewee ewee



Let,
yy=ak,+b Vabel,a>0, 0<b<k,. (3)

So,

Now using (1) and (3),

Therefore, if we can show that

2b
<2 —
)_a—i—k

v v

a b
<
(a+1) 4(2+2k

we will be done.
Now, RHS = 2a + 3 2> If ¢ > 1 then RHS > LHS. If a = 0, then y* < k,. This implies that
xy € {0,1}. If o} = 0 then We are done. If z; = 1, then y; =1 Hence Yo, = 1 for some edge

e :v € e. This implies y., > for some e : v € e. Therefore, x, 2 by the constraint added to
the LP relaxation. Hence, x}, § 4x,. 0



