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We will quickly wrap up our discussion of the problem Scheduling on Unrelated Parallel Machines
(SUPM) that started last lecture. We now have a solution (T ?, X?) to LP + (C). We showed that
at most m jobs are assigned fractionally in x?. There is a simple way in which these fractional jobs
can be rounded.

Consider the bipartite graph G = (A,B,E) such that A is the set of machines which are
assigned some fractional jobs, B is the set of jobs assigned fractionally, and E contains edges {i, j},
where i ∈ A, j ∈ B and xij ∈ (0, 1). This is a bipartite graph and it can be shown that this
contains a matching in which all jobs are matched. This is left as an exercise for you.

As mentioned in the last lecture, in order to “round” x? given the above property, we simply
assign each job to the machine it is matched with. This increases the makespan from T ? to at most
2 · T ? ≤ 2 · OPT .

Family of Tight Examples. Let n = m2 −m + 1 where n is the number of jobs and m denote
the number of machines. Suppose job-1, j1, has a processing time m on all machines and any other
job, ji, can be processed in unit time on any machine.

The OPT for this problem instance is m. Say, j1 is assigned to m1 and completes in time m.
The remaining m2 −m jobs are assigned so that each of the remaining m− 1 machines get m jobs.
In fact, the above solution is a feasible solution for the LP. Let us consider the following feasible
solution.

• Split j1 into unit sized jobs and assign one unit to each machine.

• Of the remaining jobs, assign (m − 1) of these to each machine.

This solution is a vertex of the feasibility polytope and forms a feasible solution with makespan
m. If this solution is returned by the LP relaxation, then rounding will assign j1 to one of the
machines and increase the makespan to 2m − 1.

CAPACITATED VERTEX COVER (CapVC)
INPUT: Let G = (V,E) is a graph with vertex weights wv ∈ Q+ and vertex capacities kv ∈ Z+.
OUTPUT: A vertex cover defined by a function, x : V → N0 such that

(i) There is an orientation of the edges such that the number of edges coming into any vertex is
atmost kv · x(v).

(ii)
∑

v∈V wv · x(v) is minimized.
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Status of the Problem: A factor-2 approximation can be obtained by using dependent rounding and
an alternate factor-2 approximation algorithm can be obtained using the primal–dual framework.
We will discuss a simple factor-4 algorithm that uses a deterministic rounding technique and a
factor-3 approximation algorithm using dependent rounding method. Given below is the integer
program corresponding to CapVC. The variables used are: xv ∈ N0 for each v ∈ V and ye,v ∈ {0, 1}
for each edge e ∈ E and v ∈ e. ye,v indicates if vertex v covers e.

minimize
∑

v∈V

wv · xv

such that

ye,v + ye,u ≥ 1 for each edge e = {u, v} ∈ E
∑

e:v∈e

ye,v ≤ kv · xv for each v ∈ V

xv ∈ N0

ye,v ∈ {0, 1}

The corresponding LP relaxation replaces the constraints ye,v ∈ {0, 1} by ye,v ≥ 0 and xv ∈ N0 by
xv ≥ 0. Any feasible solution to the above IP satisfies the following property:

If ye,v = 1 for some edge e : v ∈ e, then xv ≥ 1.

This property can be enforced in the LP relaxation problem by adding the following linear constraint

xv ≥ ye,v for each e : v ∈ e

Deterministic Rounding Algorithm. Here is a deterministic rounding algorithm that yields
a factor-4 approximation.

1. Solve the LP-relaxation to obtain the solution (X,Y ).

2. For each ye,v ≥ 1

2
, y?

e,v = 1. For all other ye,v, set y?
e,v = 0.

3. Set

x?
v = d

∑
e:v∈e y?

e,v

kv

e (1)

Claim: This algorithm produces a factor–4 approximation algorithm.

Proof: We know that y?
e,v ≤ 2ye,v ∀e ∈ E, v ∈ e.

And we want to show that: x?
v ≤ 4xv ∀v ∈ V .

Since,
y?

e,v ≤ 2 · ye,v

we get,

y?
v =

∑

e:v∈e

y?
e,v ≤ 2 ·

∑

e:v∈e

ye,v ≤ 2 · kv · xv (2)
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Let,
y?

v = akv + b ∀ a, b ∈ I, a ≥ 0, 0 ≤ b ≤ kv. (3)

So,

xv ≥
akv + b

2kv

=
a

2
+

b

2kv

(4)

Now using (1) and (3),

x?
v = d

y?
v

kv

e ≤ a + 1 (5)

Therefore, if we can show that

(a + 1) ≤ 4(
a

2
+

b

2kv

) ≤ 2a +
2b

kv

we will be done.

Now, RHS = 2a + 2b
kv

If a ≥ 1 then RHS ≥ LHS. If a = 0, then y?
v ≤ kv. This implies that

x?
v ∈ {0, 1}. If x?

v = 0, then we are done. If x?
v = 1, then y?

v = 1 Hence, y?
e,v = 1 for some edge

e : v ∈ e. This implies ye,v ≥ 1

2
for some e : v ∈ e. Therefore, xv ≥ 1

2
by the constraint added to

the LP relaxation. Hence, x?
v ≤ 4xv.
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