
Comments on the timing results

When bubbleSort and improvedBubbleSort were run on almost unsorted arrays, the

running time grew at more or less the same rate, though improvedBubbleSort was a little

slower due to the overhead of checking whether a swap was performed in a phase. Note that

improvedBubbleSort does not save at all in the number of phases it needs to run. The two

plot corresponding to running the functions on almost unsorted arrays are shown in the Figure

1. It is clear that the rate of growth of the functions is faster than linear and may be qudratic.

When bubbleSort and improvedBubbleSort were run on almost sorted arrays, we get

plots that are similar to those above. These are shown in Figure 2. In these plots the

running times of the two functions are very close together, sometimes bubbleSort is bet-

ter and sometimes improvedBubbleSort better. This may surprising initially, but on exam-

ining improvedBubbleSort carefully, we see that even if the input array was obtained by

taking a sequence that is completely in order and then swapping the first and the last el-

ements, improvedBubbleSort still requires n − 1 phases. In other words, if we start with

n − 1, 1, 2, 3, . . . , n − 2, 0 and run improvedBubbleSort, 0 gets to its correct position in the

very first phase. However, in each phase, n − 1 moves just one step to the right, towards its

correct position.

A different kind of small perturbation does reveal situations in which improvedBubbleSort

is much faster than bubbleSort. Let us start with a sorted sequence and make a bunch of

swaps but ensure that all the swapped elements are in the first 10 slots of the array. Thus

the first 10 elements are disorderly, but the remaining n − 10 elements in the array are all in

their correct positions. For this version of an almost sorted array, improvedBubbleSort does

outperform bubbleSort dramatically. In general, improvedBubbleSort performs very well

compared to bubbleSort on arrays in which each element is not too far away from its correct

position. See Figure 3, for plots obtained by running the sorting algorithms on almost sorted

arrays obtained using this different kind of perturbation. improvedBubbleSort is so fast that

its plot is along the x-axis is not too clearly visible.

1



2 4 6 8 10

200

400

600

800

1000

1200

1400

Figure 1: Shows the running times of bubbleSort and improvedBubbleSort, when these were

run on almost unsorted arrays.

2



2 4 6 8 10

200

400

600

800

Figure 2: Shows the running times of bubbleSort and improvedBubbleSort, when these were

run on almost sorted arrays.

3



2 4 6 8 10

100

200

300

400

500

Figure 3: Shows the running times of bubbleSort and improvedBubbleSort, when these were

run on almost sorted arrays, in which no element is too far away from its correct place.

4


