
Lecture Notes: Social Networks: Models, Algorithms, and Applications
Lecture 1: Jan 17, 2012

Scribes: Sriram V. Pemmaraju and Rajiv Raman

1 Introduction

Max-Coloring. Programs that run with stringent memory or timing constraints use a dedicated
memory manager that provides better performance than the general purpose memory management
of the operating system. The problem we consider here arises in the context of designing memory
managers for wireless protocol stacks like GPRS or 3G. With the rapid growth of wireless commu-
nication devices, many telecommunication companies now license their wireless protocol stacks to
vendors of mobile devices. These protocols stacks have stringent memory requirements as well as
soft real-time constraints and a dedicated memory manager is a natural design choice. A dedicated
memory manager for these stacks must have deterministic response times and use as little memory
as possible. The most commonly used memory manager design for this purpose is the segregated
buffer pool. This consists of a fixed set of buffers of various sizes with buffers of the same size linked
together in a linked list. As each memory request arrives, it is satisfied by a buffer whose size is
large enough.

The similarity between the interval coloring problem and the max-coloring problem can be best
understood by casting these problems into a geometric setting as rectangle packing problems. Start
with an interval representation {Iv | v ∈ V } of the given interval graph G = (V,E)1. Interpret
each weight w(v) as the height of interval Iv. In other words, the instance of the problem consists
of axis-parallel rectangles {Rv | v ∈ V }, such that the projection of Rv on the x-axis is Iv and
the height of Rv is w(v). Each rectangle can be slid up or down but not sideways; all rectangles
have to occupy the positive quadrant; and the regions of the plane they occupy have to be pairwise
disjoint. Given these constraints, the interval coloring problem is equivalent to the problem of
packing these rectangles so as to minimize the y-coordinate of the highest point contained in any
rectangle. The max-coloring problem seeks a packing of the rectangles into disjoint horizontal
strips Si = {(x, y) | x ≥ 0, ℓi ≤ y ≤ ui}, denoted by (ℓi, ui). The constraints are that every
rectangle is completely contained in some strip and for any two rectangles Ru and Rv in a strip,
their projections on the x-axis Iu and Iv are disjoint. Given these constraints, the max-coloring
problem seeks a packing of the rectangles into strips so that the total height

∑
(ui − ℓi) of the

strips is minimized. Figure 1 shows two rectangle packings of a set of rectangles; the packing on
the left is optimal for the interval coloring problem and the packing on the right is optimal for the
max-coloring problem.

2 Approximation algorithms for max-coloring

In an instance of the on-line graph coloring problem, vertices of a graph are presented one at a time
and when a vertex is presented, all edges connecting that vertex to previously presented vertices are

1Without loss of generality, we assume that the input to our algorithms is a set of weighted intervals. This is
because there are many linear-time algorithms for recognizing interval graphs and most of these return an interval
representation of the given graph, if it is an interval graph. See [3] for a recent algorithm.

1



0 1 2 3 4 5

1

2

4

5

3

A
C

H

E
G

F

D

B

6

0 1 2 3 4 5

1

2

4

5

3

A

B

C

D

E

F

G

H

0 1 2 3 4 5

C E G H

A
3 2 1 2 3

B

D

1

1

(a)
(c)

F
1

(b)

Figure 1: (a) is an interval representation of an interval graph; the “name” and weight of each
interval are shown. (b) is a rectangle packing of this interval graph corresponding to an optimal
interval coloring, with weight 5. This figure is from [2]. (c) is a rectangle packing corresponding
to an optimal max-coloring. In the packing on the right the rectangles are packed into 4 strips:
S1 = (0, 3), S2 = (3, 4), S3 = (4, 5), and S4 = (5, 6), for a total weight of 6.

also revealed. Each vertex must be assigned a color immediately after it has been presented (and
before the next vertex is presented) and a color assigned to a vertex cannot be changed later. An
algorithm for the on-line graph coloring problem assigns colors to vertices in the manner described
above, so as to construct a proper vertex coloring of the graph. We say that an algorithm A for
the on-line graph coloring problem k-colors a graph G, if no matter which order the vertices of G

are presented in, A uses at most k colors to color G.
Let A be an algorithm for the on-line graph coloring problem. We use A as a “black-box”

to devise a simple algorithm for the max-coloring problem. The algorithm, called MCA (short for
max-coloring algorithm) is given below.

MCA(G, w)

1. Sort the vertices of G in non-increasing order of weights.

(Let (v1, v2, . . . , vn) be this ordering of the vertices of G.)

2. Present the vertices in the order v1, v2, . . . , vn to A.

3. Return the coloring produced by A.

We will now make a connection between the number of colors used by A and the weight of the
coloring produced by MCA. This connection, along with known results on on-line coloring of interval
graphs will lead to constant factor approximation algorithms for max-coloring for interval graphs.

Theorem 1 Let C be a hereditary class2 of graphs and let A be an algorithm for on-line graph
coloring such that for some integer constant c > 0 and for any graph G ∈ C, A colors G with
at most c · χ(G) colors. Then, for any G ∈ C and for any weight function w : V (G) → N, MCA
produces a coloring for G whose weight is at most c · OPTM (G).

Proof: Let C1, C2, . . . , Ck be a coloring of G that is optimal for the max-coloring problem. Let
wi = maxv∈Ci

w(v) and without loss of generality assume that w1 ≥ w2 ≥ · · · ≥ wk. Now note

2A class C of graphs is hereditary if G ∈ C implies that every induced subgraph of G is also in C.

2



that k ≥ χ(G) and OPTM (G) =
∑k

i=1 wi. Let A1, A2, . . . , At be the coloring of G produced by
MCA. Let ai = maxv∈Ai

w(v) and without loss of generality assume that a1 ≥ a2 ≥ · · · ≥ at.
From our hypothesis it follows that t ≤ c · χ(G) ≤ c · k. For notational convenience, define sets
At+1 = At+2 = . . . = Ac·χ(G) = ∅ and let ai = 0 for i, t < i ≤ c · χ(G). We will now claim that for
each i, 1 ≤ i ≤ k, and each j, c(i − 1) < j ≤ c · i, we have wi ≥ aj . Showing this would imply the
result we seek because the coloring produced by MCA has weight

c·χ(G)∑

ℓ=1

aℓ =

χ(G)∑

i=1

c·i∑

j=c(i−1)+1

aj ≤
χ(G)∑

i=1

c · wi ≤ c · OPTM (G).

Since w1 is the maximum weight of any vertex in G, the claim is trivially true for i = 1. For
any i ≥ 2, let Vi ⊆ V be defined as Vi = {v | w(v) > wi}. The coloring C1, C2, . . . , Ck of G,
restricted to Vi is an (i − 1)-coloring of G[Vi], the subgraph of G induced by Vi. Because of the
order in which vertices are presented to A, all vertices in Vi are presented to A before any vertex
with weight wi. Therefore, by our hypothesis, algorithm A colors G[Vi] with no more than c · (i−1)
colors. Therefore, the weight of the heaviest vertex in color classes Aj for j, c(i− 1) < j ≤ c · i− 1
is at most wi.

From this and the induction hypothesis, it follows that

ρe(i) = ρe(j, i) + ρe(j − 1)

≥
1

4
(i − j + 1) +

1

4
(ρe(j − 1) + φe(j − 1))

≥
1

4
(ρe(j, i) + φe(j, i)) +

1

4
(ρe(j − 1) + φe(j − 1))

=
1

4
(ρe(i) + φe(i))

Acknowledgements.

We thank Narayanaswamy and Subhash Babu for letting us present their clever improvement [4]
of our analysis of First-Fit in the preliminary version [5]. We also thank Brightwell, Kierstead, and
Trotter for sharing their improved analysis [1] with us. Finally, we thank the anonymous referees
whose suggestions have improved the paper.

References

[1] G. Brightwell, H. A. Kierstead, and W. T. Trotter. A note on the first-fit coloring of interval graphs.
personal communication, 2003.

[2] Adam L. Buchsbaum, Howard Karloff, Claire Kenyon, Nick Reingold, and Mikkel Thorup. OPT versus
LOAD in dynamic storage allocation. SIAM J. Comput., 33(3):632–646, 2004.

[3] D.G. Corneil, S. Olariu, and L. Stewart. The ultimate interval graph recognition algorithm? (extended
abstract). In Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms, pages 175–180,
1998.

[4] N.S. Narayanaswamy and R. Subhash Babu. Analysis of first-fit coloring of interval graphs. personal
communication, 2004.

3



[5] S.V. Pemmaraju, R. Raman, and K. Varadarajan. Buffer minimization using max-coloring. In Proceed-
ings of The ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 562–571, 2004.

4


