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1 Barabasi-Albert Preferential Attachment Model

Last time we discussed the Preferential Attachment Model which we will refer to as BA(M).
Remember that there are a few key notions presented about this model:

• At t = 0, there is a single isolated node in the network called 0 (name refers to the time)

• At time t, node t arrives and connects to older nodes via m edges.For each new edge t, j, 0 ≤
j ≤ t− 1, is picked with probability proportional to degt(j) (i.e. degree of node j just before
time step t)

Definition 1 Constant of Proportionality

We define this property as follows:

∑
j

·c · degt(j) = 1 ⇒ c =
1∑

j ·degt(j)
=

1

2m(t)

Taking the above definition into consideration, for our purposes of analysis set m = 1. In this case,
just before time step t, there are t− 1 edges in the graph. Then the value of c is simply:

c =
1

2(t− 1)

Continuing our train of thought, let nk,t = expected number of nodes with degree k just before
time step t. Set up a recurrence for nk,t+1 for k > 1.

nk,t+1 = nk,t + nk−1,t ·
k − 1

2(t− 1)
− nk,t ·

k

2(t− 1)

nk−1,t ·
k − 1

2(t− 1)
represents the number of nodes entering which will be degree k while nk,t ·

k

2(t− 1)
represents the number of nodes exiting due to being degree k + 1.

For k = 1

n1,t+1 = n1,t + 1− n1,t+1 ·
1

2(t− 1)

Now let pk,t denote the expected fraction of nodes with degree k. Then pk,t =
nk,t

t
.

For k > 1

1



pk,t+1 · (t + 1) = pk,t · t + pk−1,t · t ·
(k − 1)

2(t− 1)
− pk,t · t ·

k

2(t− 1)

Now assume as t→∞, pk,t sequence converges. We will denote lim
t→∞

pk,t = pk

pk · (t + 1) = pk · t + pk−1 ·
(k − 1)

2
− pk ·

k

2

Simplifying the above gives us:

pk = pk−1 ·
(k − 1)

2
− pk

(k)

2

⇒ pk(
2 + k

2
) = pk−1(

k − 1

2
)

⇒ pk = pk−1(
k − 2

k + 2
)

⇒ pk = (
k − 1

k + 2
) · (k − 2

k + 1
) · (k − 3

k
)...14 · p1 =

6

(k + 2)(k + 1)k
· p1

By using the same convergence assumption for the k = 1 recurrence, we get p1 = 2
3

Therefore pk =
4

k(k + 1)(k + 2)
c̃ · 1

k3

2 Variant of Barabasi-Albert Model

The variant model has a few aspects that are different from the BA(m). When a new node arrives,
it does (a) with probability p and (b) with probability (1−p). Instead of using the other end point
with a probability, this model does:

(a) Pick the other end point j of its edge with uniform probability

(b) Pick the other end pint j of its edge with probability proportional to degt(j)

Similar to the previous model, we can write the same type of recurrences.

For k > 1

nk,t+1 = nk,t + nk − 1, t · (p
t

+ (1− p)(
k − 1

2(t− 1)
))− nk,t · (

p

t
+

(1− p)k

2(t− 1)
)
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Using fractions pk,t instead of expected sizes nk,t we get:

pk,t+1 · (t + 1) = pk,t · t + pk−1,t · t · (
p

t
+

(1− p(k − 1))

2(t− 1)
)− pk,t · t · (

p

t
+

(1− p)k

2(t− 1)
)

Taking limit as t→∞

pk(t + 1) = pk · t + pk−1(p +
(1− p)(k − 1)

2
)− pk · (p +

(1− p)k

2
)

⇒ pk(1 + p +
(1− p)k

2
) = pk−1(p +

(1− p)(k − 1)

2
)

⇒ pk(2(1 + p) + (1− p)k) = pk−1(2p + (1− p)(k − 1))

⇒ pk = pk−1(
(1− p)(k − 1) + 2p

(1− p)k + 2(1 + p)
) = pk−1(

(1− p)k + (3p− 1)

(1− p)k + 2p + 2
)

= pk = pk−1(
k + (3p−1)

(1−p

k + 2p+2
(1−p)

)

The power law exponent is given by:

2p + 2

1− p
− (3p− 1)

(1− p)

=
(3− p)

(1− p)

Problem: Look at Easley-Kleinberg chp 18, Appendix for a different analysis:

There the power law exponent = 1 +
1

(1− p)

There are many features of networks that are modelled that we have not considered:
–Community Structure
–Assortativity: Tendency of nodes of certain types to have more edges between them

More information these features can be found in Newman’s paper.
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