Lecture Notes: Social Networks: Models, Algorithms, and Applications
Lecture 2: Feb 23, 2012
Scribes: Varun Nelakonda and Patrick Rhomberg

1 Barabasi-Albert Preferential Attachment Model

Last time we discussed the Preferential Attachment Model which we will refer to as BA(M). Remember that there are a few key notions presented about this model:

- At $t=0$, there is a single isolated node in the network called 0 (name refers to the time)
- At time t, node t arrives and connects to older nodes via m edges.For each new edge $t, j, 0 \leq$ $j \leq t-1$, is picked with probability proportional to $\operatorname{deg}_{t}(j)$ (i.e. degree of node j just before time step t)

Definition 1 Constant of Proportionality

We define this property as follows:

$$
\sum_{j} \cdot c \cdot \operatorname{deg}_{t}(j)=1 \Rightarrow c=\frac{1}{\sum_{j} \cdot d e g_{t}(j)}=\frac{1}{2 m(t)}
$$

Taking the above definition into consideration, for our purposes of analysis set $m=1$. In this case, just before time step t , there are $t-1$ edges in the graph. Then the value of c is simply:

$$
c=\frac{1}{2(t-1)}
$$

Continuing our train of thought, let $n_{k, t}=$ expected number of nodes with degree k just before time step t . Set up a recurrence for $n_{k, t+1}$ for $k>1$.

$$
n_{k, t+1}=n_{k, t}+n_{k-1, t} \cdot \frac{k-1}{2(t-1)}-n_{k, t} \cdot \frac{k}{2(t-1)}
$$

$n_{k-1, t} \cdot \frac{k-1}{2(t-1)}$ represents the number of nodes entering which will be degree k while $n_{k, t} \cdot \frac{k}{2(t-1)}$ represents the number of nodes exiting due to being degree $k+1$.

For $k=1$

$$
n_{1, t+1}=n_{1, t}+1-n_{1, t+1} \cdot \frac{1}{2(t-1)}
$$

Now let $p_{k, t}$ denote the expected fraction of nodes with degree k . Then $p_{k, t}=\frac{n_{k, t}}{t}$.
For $k>1$

$$
p_{k, t+1} \cdot(t+1)=p_{k, t} \cdot t+p_{k-1, t} \cdot t \cdot \frac{(k-1)}{2(t-1)}-p_{k, t} \cdot t \cdot \frac{k}{2(t-1)}
$$

Now assume as $t \rightarrow \infty, p_{k, t}$ sequence converges. We will denote $\lim _{t \rightarrow \infty} p_{k, t}=p_{k}$

$$
p_{k} \cdot(t+1)=p_{k} \cdot t+p_{k-1} \cdot \frac{(k-1)}{2}-p_{k} \cdot \frac{k}{2}
$$

Simplifying the above gives us:

$$
\begin{aligned}
& p_{k}=p_{k-1} \cdot \frac{(k-1)}{2}-p_{k} \frac{(k)}{2} \\
& \Rightarrow p_{k}\left(\frac{2+k}{2}\right)=p_{k-1}\left(\frac{k-1}{2}\right) \\
& \Rightarrow p_{k}=p_{k-1}\left(\frac{k-2}{k+2}\right) \\
& \Rightarrow p_{k}=\left(\frac{k-1}{k+2}\right) \cdot\left(\frac{k-2}{k+1}\right) \cdot\left(\frac{k-3}{k}\right) \ldots \frac{1}{4} \cdot p_{1}=\frac{6}{(k+2)(k+1) k} \cdot p_{1}
\end{aligned}
$$

By using the same convergence assumption for the $k=1$ recurrence, we get $p_{1}=\frac{2}{3}$
Therefore $p_{k}=\frac{4}{k(k+1)(k+2)} \tilde{c} \cdot \frac{1}{k^{3}}$

2 Variant of Barabasi-Albert Model

The variant model has a few aspects that are different from the $\mathrm{BA}(\mathrm{m})$. When a new node arrives, it does (a) with probability p and (b) with probability $(1-p)$. Instead of using the other end point with a probability, this model does:
(a) Pick the other end point j of its edge with uniform probability
(b) Pick the other end pint j of its edge with probability proportional to $d e g_{t}(j)$

Similar to the previous model, we can write the same type of recurrences.

For $k>1$

$$
n_{k, t+1}=n_{k, t}+n k-1, t \cdot\left(\frac{p}{t}+(1-p)\left(\frac{k-1}{2(t-1)}\right)\right)-n_{k, t} \cdot\left(\frac{p}{t}+\frac{(1-p) k}{2(t-1)}\right)
$$

Using fractions $p_{k, t}$ instead of expected sizes $n_{k, t}$ we get:

$$
p_{k, t+1} \cdot(t+1)=p_{k, t} \cdot t+p_{k-1, t} \cdot t \cdot\left(\frac{p}{t}+\frac{(1-p(k-1))}{2(t-1)}\right)-p_{k, t} \cdot t \cdot\left(\frac{p}{t}+\frac{(1-p) k}{2(t-1)}\right)
$$

Taking limit as $t \rightarrow \infty$

$$
\begin{aligned}
& p_{k}(t+1)=p_{k} \cdot t+p_{k-1}\left(p+\frac{(1-p)(k-1)}{2}\right)-p_{k} \cdot\left(p+\frac{(1-p) k}{2}\right) \\
& \Rightarrow p_{k}\left(1+p+\frac{(1-p) k}{2}\right)=p_{k-1}\left(p+\frac{(1-p)(k-1)}{2}\right) \\
& \Rightarrow p_{k}(2(1+p)+(1-p) k)=p_{k-1}(2 p+(1-p)(k-1)) \\
& \Rightarrow p_{k}=p_{k-1}\left(\frac{(1-p)(k-1)+2 p}{(1-p) k+2(1+p)}\right)=p_{k-1}\left(\frac{(1-p) k+(3 p-1)}{(1-p) k+2 p+2}\right) \\
& =p_{k}=p_{k-1}\left(\frac{k+\frac{(3 p-1)}{(1-p}}{k+\frac{2 p+2}{(1-p)}}\right)
\end{aligned}
$$

The power law exponent is given by:

$$
\begin{gathered}
\frac{2 p+2}{1-p}-\frac{(3 p-1)}{(1-p)} \\
=\frac{(3-p)}{(1-p)}
\end{gathered}
$$

Problem: Look at Easley-Kleinberg chp 18, Appendix for a different analysis:
There the power law exponent $=1+\frac{1}{(1-p)}$
There are many features of networks that are modelled that we have not considered:
-Community Structure
-Assortativity: Tendency of nodes of certain types to have more edges between them More information these features can be found in Newman's paper.

References

[1] Barabasi, Albert. The emergence of scaling in Random Networks. Science 1999.

