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1 IntroductionPacket routing plays a central role in the design of large-scale parallel com-puters. Simply stated, packet routing consists of moving packets of datafrom one location to another in a network. The goal is to move all of thepackets to their desired locations as quickly as possible, and with as lit-tle queuing as possible. The packet routing problem has been extensivelystudied, and we refer the reader to [5] for a broader coverage of the topic.The method of packet routing considered in this paper is known as store-and-forward routing. In a store-and-forward routing algorithm, packets areviewed as atomic objects. At each step, a packet can either wait in a queueor jump from one queue to another.Figure 1 shows a graph model for store-and-forward routing. The shadednodes labeled 1 through 5 in the �gure represent processors or switches, andthe edges between the nodes represent wires. A packet is depicted by asquare box containing the label of its destination. The goal is to route thepackets from their origins to their destinations via a series of synchronizedtime steps, where at each step at most one packet can traverse each edge.Packets wait in three di�erent kinds of queues. Before the routing begins,packets are stored at their origins in special initial queues. For example,packets 4 and 5 are stored in the initial queue at node 1. When a packettraverses an edge, it enters the edge queue at the end of that edge. Apacket can traverse an edge only if at the beginning of the step the edgequeue at the end of that edge is not full. In the example of Figure 1 theedge queues can hold two packets. Upon traversing the last edge on itspath, a packet is removed from the edge queue and placed in a special �nalqueue at its destination. For simplicity, the �nal queues are not shown inFigure 1. Independent of the routing algorithm used, the size of the initialand �nal queues are determined by the particular packet routing problemto be solved. Thus, any bound on the maximum queue size required by arouting algorithm refers only to the edge queues.This paper focuses on the problem of timing the movements of the pack-ets along their paths. A schedule for a set of packets speci�es which moveand which wait at each time step. Given any underlying network, and anyselection of paths for the packets, our goal is to produce a schedule for thepackets that minimizes the total time and the maximum queue size neededto route all the packets to their destinations.Of course, there is a strong correlation between the time required toroute the packets and the selection of the paths. In particular, the maximum2



1

2
1

3

45

5 4

2

3

Figure 1: A graph model for packet routing.distance, d, traveled by any packet is always a lower bound on the time. Wecall this distance the dilation of the paths. Similarly, the largest numberof packets that must traverse a single edge during the entire course of therouting is a lower bound. We call this number the congestion, c, of thepaths. For example, see Figure 2.Given any set of paths with congestion c and dilation d in any network,it is straightforward to route all of the packets to their destinations in cdsteps using queues of size c at each edge. Each packet can be delayed atmost c � 1 steps at each of at most d edges on the way to its destination(since the queues are big enough so that packets can never be delayed by afull queue in front.)In this paper, we show that there are much better schedules. We beginin Section 2 with a randomized on-line algorithm that produces a scheduleof length O(c + d log(Nd)) using queues of size O(log(Nd)), where N isthe total number of packets. This algorithm is close to optimal when c islarge. Our main result appears in Section 3. It establishes the existenceof a schedule using O(c + d) steps and constant-size queues at every edge,thereby achieving the naive lower bounds for any routing problem.The proof of the main result is nonconstructive. However, the resultstill has several applications, as described below. In addition, the result is3
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Figure 2: A set of paths for the packets with dilation d = 3 and congestionc = 3.
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highly robust in the sense that it works for any set of edge-simple paths andany underlying network. (�A priori, it would be easy to imagine that theremight be some set of paths on some network that required more than 
(c+d)steps or nonconstant queues to route all the packets.) Furthermore, the mainresult can be made constructive using the recently discovered algorithmicversion of the Lov�asz Local Lemma [1, 2]. A manuscript describing thealgorithm is in preparation [7].If a particular routing problem is to be performed many times over,then the time required to compute the optimal schedule once becomes lessimportant. This situation arises in network emulation problems. Typically,a guest network G is emulated by a host network H by embedding G intoH .(For a more complete discussion of emulations and embeddings, see [3].) Anembedding maps nodes of G to nodes of H, and edges of G to paths in H .There are three important measures of an embedding: the load, congestion,and dilation. The load of an embedding is the maximum number of nodes ofG that are mapped to any one node of H. The congestion is the maximumnumber of paths corresponding to edges of G that use any one edge of H .The dilation is the length of the longest path. Let l, c, and d denote the load,congestion, and dilation of the embedding. Once G has been embedded inH ,H can emulate G in a step-by-step fashion. Each node ofH �rst emulatesthe local computations performed by the l (or fewer) nodes mapped to it.This takes O(l) time. Then for each packet sent along an edge of G, H sendsa packet along the corresponding path in the embedding. Using the mainresult of this paper, routing the packets to their destinations takes O(c+ d)steps. Thus, H can emulate each step of G in O(l + c+ d) steps.In a related paper, Leighton, Maggs, Ranade, and Rao [6] show how toroute packets in O(c+L+logN) steps using a simple randomized algorithmprovided that the underlying network is leveled and has depth L. As aconsequence, optimal routing algorithms can be derived for most of thenetworks that are commonly used for parallel computation. Unfortunately,it seems to be di�cult to extend this result to hold for all networks. In fact,we have considered many simple on-line algorithms (including the algorithmpresented in [6]), and found routing problems for each algorithm that resultin schedules that use asymptotically more than 
(c+d+logN) steps. Severalof these examples are included in Section 4.The results of this paper also have applications to job-shop scheduling. Inparticular, consider a scheduling problem with jobs j1; . . . ; jr, and machinesm1; . . . ;ms, for which each job must be performed on a speci�ed sequenceof machines. In our application, we assume that each job occupies each5



machine that works on it for a unit of time, and that no machine has towork on any job more than once. Of course, the jobs correspond to packets,and the machines correspond to edges in the packet routing problem. Hence,we can de�ne the dilation of the scheduling problem to be the maximumnumber of machines that must work on any job, and the congestion to bethe maximum number of jobs that have to be run on any machine. Asa consequence of our packet routing result, we show that any schedulingproblem can be solved in O(c + d) steps. In addition, we will prove thatthere is a schedule for which each job waits at most O(c + d) steps beforeit starts running, and that each job waits at most a constant number ofsteps in between consecutive machines. The queue of jobs waiting for anymachine will also always be at most a constant. These results are optimal,and are substantially better than previously known bounds for this problem[4, 10].Recently some results were proved in [11] for the more general problemof job-shop scheduling where jobs are not assumed to be unit length anda machine may have to work on the same job more than once. They giverandomized and deterministic algorithms that produce schedules that arewithin a polylogarithmic factor of the optimal length for the more generaljob-shop problem. However, it is not known whether there exist schedulesof length O(c+ d) for this problem.This paper also leaves open the question of whether or not there is anon-line algorithm that can schedule any set of paths in O(c+ d) steps usingconstant-size queues. We suspect that �nding such an algorithm (if oneexists) will be a challenging task. Our negative suspicions are derived fromthe fact that we can construct counterexamples to most of the simpleston-line algorithms. In other words, for several natural on-line algorithmswe can �nd paths for N packets for which the algorithm will construct aschedule using asymptotically more than 
(c+ d+ logN) steps. Several ofthe counterexamples are included in Section 4.2 An on-line algorithmThere is a simple randomized on-line algorithm for producing a scheduleof length O(c+ d log(Nd)) using queues of size O(log(Nd)), where c is thecongestion, d is the dilation, and N is the number of packets.First, each packet is assigned a delay chosen randomly, independently,and uniformly from the interval [1; �clog(Nd) ], where � is a constant that will6



be speci�ed later. A packet that is assigned a delay of x waits in its initialqueue for x time steps, and then moves on to its �nal destination withoutever stopping.The trouble with this schedule is that several packets may traverse thesame edge in a single step. However, we can bound the number of packetsthat are likely to do so. The probability that more than log(Nd) packetsuse a particular edge g at a particular time step t is at mostcXk=log(Nd)+1 ck!� log(Nd)�c �k �1� log(Nd)�c �c�k ;since at most c di�erent packets pass through g, and for each of these, atmost one of the �clog(Nd) possible delays sends it through g at step t. This sumis at most � clog(Nd)� (log(Nd)=�c)log(Nd). To bound the probability that morethan log(Nd) packets pass through any edge at any time step, we multiplythis quantity by the number of choices for g, at most Nd, and the numberof choices for t, at most d+ �clog(Nd) . Using the inequality �ab� � (ae=b)b for0 < b < a, and noting that c � N , we see that for large enough, but �xed,�, the product is at most 1=(Nd). Thus, with high probability, no morethan O(log(Nd)) packets will want to traverse any edge at any step of thisunconstrained schedule.Each step of the unconstrained schedule can be simulated by O(log(Nd))steps of a legitimate schedule. The �nal schedule requires O(c+ d log(Nd))steps to complete the routing, and uses queues of size O(log(Nd)).3 An O(c+ d)-step scheduleIn this section, we prove that for any set of packets whose paths are edge-simple1 and have congestion c and dilation d, there is a schedule of lengthO(c + d) in which at most one packet traverses each edge of the networkat each step, and at most a constant number of packets wait in each queueat each step. Note that there are no restrictions on the size, topology, ordegree of the network or on the number of packets.Our strategy for constructing an e�cient schedule is to make a successionof re�nements to the \greedy" schedule, S0, in which each packet moves atevery step until it reaches its �nal destination. This initial schedule is asshort as possible; its length is only d. Unfortunately, as many as c packets1An edge-simple path uses no edge more than once.7



may have to use an edge at a single time step in S0, whereas in the �nalschedule at most one packet is allowed to use an edge at each step. Eachre�nement will bring us closer to meeting this requirement by bounding thecongestion within smaller and smaller frames of time.The proof uses the Lov�asz Local Lemma [12, pp. 57{58] at each re�ne-ment step. Given a set of \bad" events in a probability space, the lemmaprovides a simple inequality which, when satis�ed, guarantees that withprobability greater than zero, no bad event occurs. The inequality relatesthe probability that each bad event occurs with the dependence among them.A set of events A1; . . . ;Am in a probability space has dependence at most bif every event is mutually independent of some set of m � b � 1 other badevents. The lemma is nonconstructive; for a discrete probability space, itshows only that there exists some elementary outcome that is not in anybad event.Lemma 3.1 (Lov�asz) Let A1; . . . ; Am be a set of \bad" events each occur-ring with probability p with dependence at most b. If 4pb < 1, then withprobability greater than zero, no bad event occurs.3.1 A preliminary resultBefore proving the main result of this section, we show that there is a sched-ule of length (c+d)2O(log�(c+d)) that uses queues of size log(c+d)2O(log�(c+d)).This preliminary result is substantially simpler to prove because of the re-laxed bounds on the schedule length and queue size. Nevertheless, it il-lustrates the basic ideas necessary to prove the main result. We begin byproving a lemma that is used in the proofs of both the preliminary resultand the main result.Before proceeding, we need to introduce some notation. A T -frame is asequence of T consecutive time steps. The frame congestion, C, in a T -frameis the largest number of packets that traverse any edge in the frame. Therelative congestion, R, in a T -frame is the ratio C=T of the congestion inthe frame to the size of the frame.Lemma 3.2 For any set of packets whose paths are edge-simple and havecongestion c and dilation d, there is a schedule of length O(c+ d) in whichpackets never wait in edge queues and in which the relative congestion inany frame of size log d or greater is at most 1.8



Proof: The proof uses the Lov�asz Local Lemma. The �rst step is to assignan initial delay to each packet. Without loss of generality, we assume thatc = d. The delays are chosen from the range [1; �d], where � is a �xedconstant that will be determined later. In the resulting schedule, S1, apacket that is assigned a delay of x waits in its initial queue for x steps,then moves on to its destination without waiting again until it enters its�nal queue. The length of S1 is at most (1 + �)d. We use the Lov�asz LocalLemma to show that if the delays are chosen randomly, independently, anduniformly, then with nonzero probability the relative congestion in any frameof size log d or greater is at most 1. Thus, such a set of delays must exist.To apply the Lov�asz Local Lemma, we associate a bad event with eachedge. The bad event for edge g is that more than T packets use g in someT -frame, for T � log d. To show that there is a way of choosing the delays sothat no bad event occurs, we need to bound the dependence, b, among thebad events and the probability, p, of each individual bad event occurring.The dependence calculation is straightforward. Whether or not a badevent occurs depends solely on the delays assigned to the packets that passthrough the corresponding edge. Thus, two bad events are independentunless some packet passes through both of the corresponding edges. Sinceat most c packets pass through an edge, and each of these packets passesthrough at most d other edges, the dependence, b, of the bad events is atmost cd = d2.Computing the probability of each bad event is a little trickier. Let p bethe probability of the bad event corresponding to edge g. Thenp � dXT=log d(1 + �)d dT!� T�d�T :This expression is derived as follows. Frames of size greater than d cannothave relative congestion greater than 1, since the total congestion is only d.Thus, we can ignore them. We bound the probability that any frame hasrelative congestion greater than 1 by summing, over all frame sizes T fromlog d to d, the probability that some T -frame has relative congestion greaterthan 1. Furthermore, for any T , there are at most (1+�)d di�erent T -framesand we bound the probability that any one of them has relative congestiongreater than 1 by summing their individual probabilities. The number ofpackets passing through g in any T -frame has a binomial distribution. Thereare d independent Bernoulli trials, one for each packet that uses g. Sinceat most T of the possible �d delays will actually send a packet through g9



time step1 (1+α)d

log dFigure 3: Schedule S1. The schedule is derived from the greedy schedule,S0, by assigning an initial delay in the range [1;�d] to each packet. We usethe Lov�asz Local Lemma to show that within each log d-frame, at most log dpackets pass through each edge.in the frame, each trial succeeds with probability T=�d. (Here we use theassumption that the paths are edge-simple.) The probability of more thanT successes is at most �dT�(T=�d)T .For su�ciently large, but �xed, � the product 4pb is less than 1, andthus, by the Lov�asz Local Lemma, there is some assignment of delays suchthat the relative congestion in any frame of size log d or greater is at most1.Theorem 3.3 For any set of packets whose paths are edge-simple and havecongestion c and dilation d, there is a schedule having length (c+d)2O(log�(c+d))and maximum queue size log(c+ d)2O(log�(c+d)) in which at most one packettraverses each edge at each step.Proof: For simplicity, we shall assume without loss of generality thatc = d, so that the bounds on the length and queue size are d2O(log� d) and(log d)2O(log� d), respectively.The proof has the following outline. We begin by using Lemma 3.2 toproduce a schedule S1 in which the number of packets that use an edgein any log d-frame is at most log d. Next we break the schedule into (1 +�)d= log d log d-frames, as shown in Figure 3. Finally, we view each log d-frame as a routing problem with dilation log d and congestion log d, andsolve it recursively.Each log d-frame in S1 can be viewed as a separate scheduling problemwhere the origin of a packet is its location at the beginning of the frame,and its destination is its location at the end of the frame. If at most log dpackets use each edge in a log d-frame, then the congestion of the problem is10



log d. The dilation is also log d because in log d time steps a packet can movea distance of at most log d. In order to schedule each frame independently, apacket that arrives at its destination before the last step in the rescheduledframe is forced to wait there until the next frame begins.All that remains is to bound the length of the schedule and the size ofthe queues. The recursion proceeds to a depth of O(log� d) at which pointthe frames have constant size, and at most a constant number of packetsuse each edge in each frame. The resulting schedule can be converted to onein which at most one packet uses each edge in each time step by slowing itdown by a constant factor. Since the length of the schedule increases by aconstant factor during each recursive step, the length of the �nal schedule isd2O(log� d). The bound on the queue size follows from the observation thatno packet waits at any one spot (other than its origin or destination) formore than (log d)2O(log� d) consecutive time steps, and in the �nal scheduleat most one packet traverses each edge at each time step.3.2 The main resultProving that there is a schedule of length O(c+d) using constant-size queuesis more di�cult. Removing the 2O(log�(c+d)) factor in the length of theschedule seems to require delving into second-order terms in the probabilitycalculations, and reducing the queue size to a constant mandates greatercare in spreading delays out over the schedule.Theorem 3.4 For any set of packets with edge-simple paths having conges-tion c and dilation d, there is a schedule having length O(c+d) and constantmaximum queue size in which at most one packet traverses each edge of thenetwork at each step.Proof: To make the proof more modular, we bound the frame size andrelative congestion after each step of the construction in lemmas. Theselemmas and their proofs are included within the proof of the theorem. Weassume without loss of generality that c = d, so that the bound on the lengthof the schedule is O(d).As before, the strategy is to make a succession of re�nements to thegreedy schedule, S0. The �rst re�nement is special. It transforms S0 intoa schedule S1 in which the relative congestion in each frame of size log dor more is at most 1. Thereafter, each re�nement transforms a scheduleSi with relative congestion at most r(i) in any frame of size I(i) or greater11
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Si+1 are given by the recurrencesr(i+1) = ( 1 i = 0r(i)(1 + O(1)=qlog I(i)) i > 0and I(i+1) = ( log d i = 0log5 I(i) i > 0which have solutions I(j) = O(1) and r(j) = O(1) for some j, where j =O(log� d).We have not explicitly de�ned the values of r(i) and I(i) for which therecursion terminates. However, in several places in the proof that followswe implicitly use the fact that I(i) is su�ciently large that some inequalityholds. The recursion terminates when the �rst of these inequalities failsto hold. When this happens, I(i) is bounded from above by some constant.Furthermore, independent of the depth of the recursion, r(i) is bounded fromabove by a constant.Throughout the following lemmas we make references to quantities suchas rI packets or log4 I time steps, when in fact rI and log4 I may not beintegral. Rounding these quantities to integer values when necessary doesnot a�ect the correctness of the proof. For ease of exposition, we shallhenceforth cease to consider the issue.An important invariant that we maintain throughout the construction isthat in schedule Si+1 every packet waits at most once every I(i) steps. Asa consequence, there is a constant k1 such that a packet waits at most onceevery k1 steps in Sj , which implies both that the queues in Sj cannot growlarger than a constant and that the total length of Sj is O(d). Schedule Sjalmost satis�es the requirement that at most one packet traverses each edgein each step. By simulating each step of Sj in a constant number of stepswe can meet this requirement with only a factor of 2 increase in the queuesize and a constant factor increase in the running time.The rest of the proof describes the re�nement step in detail. For ease ofnotation, we use I and r in place of I(i) and r(i).The �rst step in the ith re�nement is to break schedule Si into blocks of2I3+2I2�I consecutive time steps. Each block is rescheduled independently.For each block, each packet is assigned a delay chosen from 1 to I . Wewill use the Lov�asz Local Lemma to show that if the delays are chosen13



randomly, uniformly, and independently, then with non-zero probability theresulting schedule will have the properties that we want.A packet that is assigned a delay of x must wait for x steps at thebeginning of the block. In order maintain the invariant that in scheduleSi+1 every packet waits at most once every I(i) steps, the packet is notdelayed for x consecutive steps at the beginning of the block, but instead adelay is inserted every I steps in the �rst xI steps of the block. A packetthat is delayed x steps reaches its destination at the end of the block by step2I3 + 2I2 � I + x.In order to independently reschedule the next block, the packets mustreside in exactly the same queues at the end of the rescheduled block thatthey did at the end of the block of Si. Since some packets arrive early, theymust be slowed down. Thus, if a packet is assigned delay x, then I�x delaysare inserted in the last I(I � x) steps of the block, one every I steps. Sinceevery packet experiences a total delay of I , the rescheduled block must havelength 2I3 + 2I2.Before the delays for schedule Si+1 have been inserted, a packet is delayedat most once in each block of Si, provided that 2I3+2I2�I < I(i�1), whichholds as long as I is larger than some constant. Prior to inserting each newdelay into a block, we check if it is within I steps of the single old delay.If the new delay would be too close to the old delay, then it is simply notinserted. The loss of a single delay in a block has a negligible e�ect on theprobability calculations in the lemmas that follow.The following two lemmas are used several times in the proof of thetheorem. Lemma 3.5 shows that if we can bound the relative congestion inframes of size T to 2T � 1, then we can bound the relative congestion inall frames of size T or greater. Lemma 3.6 bounds the probability that toomany packets use any particular edge g in any small frame in the center ofa block after every packet has been delayed for a random number of stepsat the beginning of the block.Lemma 3.5 In any schedule, if the number of packets that use a particularedge g in any y-frame is at most Ry, for all y between T and 2T � 1, thenthe number of packets that use g in any y-frame is at most Ry for all y � T .Proof: Consider a frame of size T 0, where T 0 > 2T � 1. The �rst (bT 0=Tc�1)T steps of the frame can be broken into T -frames. In each of these frames,14



at most RT packets use g. The remainder of the T 0-frame consists of a singley-frame, where T � y � 2T � 1, in which at most Ry packets use g.Lemma 3.6 Suppose that there are positive constants �, �1, and �2, suchthat in a block of size I�1 or smaller the relative congestion is at most �in frames of size I�2 or larger. Furthermore, suppose that each packet isassigned a delay chosen randomly, independently, and uniformly from therange [1; I�2 ] and that if a packet is assigned a delay of x, then x delays areinserted in the �rst I�3 steps of the block and I�2 � x delays are insertedin the last I�3 steps, where �3 is also a positive constant. Then for anyconstant �4 there is a � such that the probability that more than �1T packetsuse any one edge g in any frame of size T � I1 in-between the �rst and lastI�3 steps in the new block is at most 1=I�4, where I1 = log2 I, �1 = �(1+�),and � = O(1)=plog I.Proof: We begin by computing an upper bound on the probability, p1, thatmore than �1I1 packets use an edge g in a particular I1-frame. Since a packetmay be delayed up to I�2 steps before the frame, any packet that used gin the I1-frame spanning the same steps in the block before the delays wereinserted or in the I�2 steps before that frame may use g after the delays areinserted. Thus, there are at most �(I�2 + I1) packets that can use g in theframe. For each of these, the probability that the packet uses g in the frameafter being delayed is at most (I1=I�2), provided that the packet's path usesg at most once. Thus, the probability p1 that more than �1I1 packets use gin the frame is bounded byp1 � �(I�2+I1)Xk=�1I1  �(I�2 + I1)k !(I1=I�2)k(1� I1=I�2)�(I�2+I1)�k :Let �1 = �(1 + �). We bound the series as follows. The expected numberof packets that use g in the frame is �I1(1 + I1=I�2). For I1 = log2 I and� = O(1)=plog I , �I1(1 + �) is larger than the expectation, so the �rstterm in the series is the largest, and there are at most �(I�2 + I1) terms.Applying the inequalities (1 + x) � ex, ln(1 + x) � x � x2=2 for 0 � x � 1,and �ab� � (ae=b)b for 0 < b < a to this term, we havep1 � �(I�2 + I1)e��I1�2(1=2��=2�I1=�2I�2�2I1=�I�2 ):For I1 = log2 I and � = k1=plog I, we can ensure that p1 � 1=Ik2 , for anyconstant k2 > 0 by making constant k1 large enough.15



Next we need to bound the probability p2 that more than �1I1 packetsuse g in any I1-frame of the block. There are at most I�1 + I�2 I1-frames.Thus p2 � (I�1 + I�2)p1. By making the constant k2 large enough, we canensure that p2 � 1=Ik3 , for any constant k3 > 0.To bound the relative congestion in frames of size greater than I1, weappeal to Lemma 3.5. The calculations for frames of size I1 + 1 through2I1�1 are similar to those for frames of size I1. There are at most I�1+I�2frames of any one size, and I1 frame sizes between I1 and 2I1 � 1. Byadjusting the constants as before, we can guarantee that the probability pthat more than �1T packets use g in any T -frame for T between I1 and2I1 � 1 is at most 1=I�4 for any constant �4 > 0.Lemma 3.7 shows that by inserting delays at the beginning and end ofthe block we can reduce the frame size in the center of the block while onlyslightly increasing the relative congestion. The bounds proved in Lemma 3.7are shown in Figure 5.Lemma 3.7 There is some way of assigning delays to the packets so thatin-between the �rst and last I2 steps of a block, the relative congestion inany frame of size I1 = log2 I or greater is at most r1 = r(1 + "1), where"1 = O(1)=plog I.Proof: The proof uses the Lov�asz Local Lemma. With each edge we as-sociate a bad event. For edge g, a bad event occurs when more than r1Tpackets use g in any T -frame for T � I1. To show that no bad event occurs,we need to bound both the dependence of the bad events and the probabilitythat an individual bad event occurs.We �rst bound the dependence, b. At most r(2I3 + 2I2 � I) packetsuse an edge in the block. Each of these packets travels through at most2I3+2I2� I other edges in the block. Furthermore, r = r(i) = O(1). Thus,a bad event depends on b = O(I6) other bad events.For any constant �4, we can bound the probability that a bad eventoccurs by 1=I�4 by applying Lemma 3.6 with � = r, I�1 � 2I3 + 2I2 � I ,I�2 = I , I�3 = I2, "1 = � = O(1)=plog I, and r1 = �1 = r(1+�) = r(1+"3).Since a bad event depends on only b = O(I6) other bad events, we canmake 4pb < 1 by making �4 large enough. By the Lov�asz Local Lemma,there is some way of choosing the packet delays so that no bad event occurs.Inserting delays into the schedule may increase the relative congestionin I-frames (or smaller frames) in the I2 steps at the beginning and end16
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Proof: The proof uses the Lov�asz Local Lemma as before. With each edgewe associate a bad event. For edge g, a bad event occurs1. if more than r3T packets use g in any T -frame between steps I3 andI3 + 3I2 (i.e., in the fuzzy region), for any T � I1, or2. if more than r2T packets use g in any T -frame between steps I log3 Iand I3, for any T � I1, or3. if more than r2T packets use g in any T -frame between steps 2I3 +3I2 � I log3 I and 2I3 + 3I2, for any T � I1.The calculation for the dependence b is the same as in Lemma 3.7. Atmost O(I3) packets pass through each edge g, and each of these packetspasses through at most O(I3) other edges. Hence, b = O(I6).To bound the probability that a bad event occurs, we consider the threecases separately, and sum their individual probabilities of occurrence.Since no delays are inserted into the fuzzy region, we can use Lemma 3.6to prove that for any constant k5, there is an "3 = O(1)=plog I such thatthe probability that more than r(1 + "3)T packets use g in any T -framebetween steps I3 and I3 + 3I2, for any T � I1, is at most 1=Ik5 . We applyLemma 3.6 with � = r(1 + 2=I), I�1 � 2I3 + 3I2, I�2 = I2, I�3 = I3,"3 = �+2(1+ �)=I = O(1)=plog I, r3 = �1 = r(1+2=I)(1+�) = r(1+ "3),and �4 = k5.Before the fuzzy region, the situation is more complex. By the kth step,0 � k � I3, a packet with delay x has waited xk=I3 times. Thus, the delayof a packet at the kth step varies essentially uniformly from 0 to u = k=I.For u � log3 I , or equivalently, k � I log3 I, we can show that the relativecongestion in any frame of size I1 or greater has not increased much.The probability p2 that more than r2I1 packets use an edge g in a par-ticular I1-frame is given byp2 � r1(I1+u)Xs=r2I1  r1(I1 + u)s !(I1=u)s(1� I1=u)r1(I1+u)�s :Using the same inequalities as in the proof of Lemma 3.6, we havep2 � r1(I1 + u)e�r1I1"22(1=2�"2=2�I1="22u�2I1="2u):The calculations for frame of size I1 + 1 through 2I1 � 1 are similar.Thus for any constant k6, for I1 = log2 I , u � log3 I , and "2 = O(1)=plog I ,19



the probability p4 that more than r(1 + "2)T packets use g in any T -framebetween steps I log3 I and I3, for any T � I1, is at most 1=Ik6 .By symmetry, the probability that more than r2T packets use g betweensteps 2I3+3I2�I log3 I and 2I3+3I2, for any T � I1, is also at most 1=Ik6 .Thus, the probability that a bad event occurs for edge g is at most1=Ik5 + 2=Ik6 . Since the dependence is at most O(I6), by adjusting theconstants k5 and k6 we can apply the Lov�asz Local Lemma.For steps 0 to I log3 I , we use the following lemma to bound the framesize and relative congestion.Lemma 3.10 The relative congestion in any frame of size I2 or greaterbetween steps 0 and I log3 I is at most r4, where I2 = log4 I and r4 =r1(1 + 1= log I).Proof: The proof is similar to that of Lemma 3.8.We have now completed our transformation of schedule Si into scheduleSi+1. Let us review the relative congestion and frame sizes in the di�erentparts of a block. Between steps 0 and I log3 I , the relative congestion in anyframe of size I2 or greater is at most r4. Between this region and the fuzzyregion, the relative congestion in any frame of size I1 or greater is at most r2.In the fuzzy region, the relative congestion in any frame of size I1 or greateris at most r3. After the fuzzy region, the relative congestion in any frame ofsize I1 or greater is again r2, until step 2I3+3I2�I log3 I, where the relativecongestion in any frame of size I2 or greater is r4. These bounds are shownin Figure 7. Finally we must bound the relative congestion in frames thatspan the di�erent parts of a block (or two di�erent blocks). Since we havebound the relative congestion in blocks of size log4 I or greater, it is safe tosay that in the the entire schedule Si+1 the relative congestion in any frameof size I(i+1) = log5 I or greater is at most r(i+1) = r(1 + O(1)=plog I).4 Counterexamples to on-line algorithmsThis section presents examples where several natural on-line schedulingstrategies do poorly. Based on these examples, we suspect that �ndingan on-line algorithm that can schedule any set of paths in O(c + d) stepsusing constant-size queues will be a challenging task.20
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Figure 7: Final bounds on frame size and relative congestion. To reducethe frame size in the fuzzy regions, delays are inserted only outside theshaded region. Here I1 = log2 I, I2 = log4 I, r2 = r(1 + O(1)=plog I),r3 = r(1 + O(1)=plog I), and r4 = r1(1 + 1= log I) � r(1 + O(1)=plog I).4.1 Counterexample for routing on leveled networksIn the �rst example, we examine a routing strategy for scheduling packetson leveled networks from [6, 8, 9]. A leveled network is a network whoseswitches can be partitioned into sets or levels labeled with integers so thatevery edge goes from a switch in some level i to a switch in the next leveli + 1. The depth of the network is the maximum distance between twoswitches.The routing strategy consists of randomly choosing ranks for the packetsto be routed and using this value as a priority in a very strong manner; allthe packets that use a switch must use it in order of rank. That is, the lowestranked packet that uses the switch passes through the switch �rst, then thesecond lowest ranked packet passes through the switch and so on. Noticethat at some point a packet with some rank may reach a switch before apacket with a lower rank reaches the switch through a di�erent edge. Inthis case the packet must wait for the lower ranked packet to reach anduse the switch before it can use the switch. So in order for a packet todecide if it can use a switch or not it must somehow know what the highestranked packet that is going to enter the switch through some other edgeis. This is achieved through the use of ghost messages. When a packetuses an outgoing edge of a switch it sends a ghost message consisting onlyof the packet's rank down all the other edges. These messages serve as alower bound to each of these switches for the rank of any packet comingthrough this incoming edge, and are appropriately forwarded. Finally, end-of-stream(EOS) messages are used to indicate that no more packets will21



come from a switch. Thus, a packet is allowed to go if it is the lowest rankedpacket on any incoming edge and it has a lower rank than the last ghost thatarrived on incoming edges that do not have a packet and have not recievedan EOS message. This strategy is described in more detail in each of [6, 8, 9].With high probability, it produces a schedule of length O(c+L+logN) usingconstant-size queues for any set of N packets whose paths have congestionc on any bounded-degree leveled network with depth L. For a wide varietyof networks (both leveled and non-leveled), this algorithm can be used asa subroutine to derive a routing algorithm that delivers all the packets totheir destinations in O(c+ d+ logN) time, with high probability.In our �rst example, however, we show that this is not always the case.We describe an N-node leveled network in which a set of packets with con-gestion and dilation O(1) requires 
(log2N= log logN) steps to be deliveredusing the strategy for scheduling packets on leveled networks from [6, 8, 9].Our example does not contradict the previous analysis of the algorithm,since the network has L = �(log2N) levels. However, it shows that reduc-ing the congestion and dilation below the depth of the network does notnecessarily improve the running time.Observation 4.1 For the leveled network scheduling strategy there is anN -node directed acyclic network of degree 3 and a set of paths with conges-tion c = 3 and dilation d = 3 where the expected length of the schedule is
(log2N= log logN).Proof: The network consists of many disjoint copies of the subnetworkpictured in Figure 8. For simplicity, we dispense with the initial queues; thepackets originate in edge queues. The subnetwork is composed of k= log klinear chains of length k, where k shall later be shown to be �(logN). Thesecond node of each linear chain is connected to the second to last nodeof the previous chain by a diagonal edge. We assume that at the end ofeach edge there is a queue that can store 2 packets. Initially, the queueinto the �rst node of each chain contains an end-of-stream (EOS) signaland one packet, and the queue into the second node contains two packets.A packet's destination is the last node in the previous chain. Each packettakes the diagonal edge to the previous chain and then the last edge in thechain. Thus, the length of the longest path is d = 3. However, the depthof this subnetwork or any number of disjoint copies of this subnetwork is�(k2= log k). That is, there are at least 
(k2= log k) levels in this network.We now proceed by showing that the time for routing can be 
(k2= log k).22
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optimum schedule has length O(logN).4.2 Counterexample for various deterministic strategiesThe second example is quite general. It shows that for any deterministicstrategy that chooses the order in which packets pass through a switchindependent of the future paths of the packets, there is a network and a setof paths with congestion c and dilation d for which the schedule producedhas length at least c(d� 1)= log c. This observation covers strategies such asgiving priority to the packet that has spent the most (or least) time waitingin queues, and giving priority to the packet that arrives �rst at a switch.The network is a complete binary tree of height d� 1 with an auxiliary edgefrom the root to an auxiliary node.Observation 4.2 For any deterministic strategy that chooses the order inwhich packets pass through a switch independent of the paths that the packetstake after they pass through the switch, there is a network and a set of pathswith congestion c and dilation d for which the schedule produced has lengthc(d� 1)= log c.Proof: We construct the example for congestion c and dilation d, E(c; d),recursively. The base case is the example E(c; log c + 1). Each of the cleaves sends a packet to the auxiliary node, causing congestion c in theauxiliary edge. The network for E(c; d) contains c copies of the network forE(c; d � log c), as shown in Figure 9. First, the auxiliary nodes for thesecopies are paired up and merged so that there are c=2 auxiliary nodes eachwith two auxiliary edges into it. Next, the auxiliary nodes become the leavesof a complete binary tree of height log c� 1 with its own auxiliary node andedge. For each copy of E(c; d� log c), the deterministic scheduling strategychooses some packet to cross its auxiliary edge last. We extend the path ofthis packet so that it traverses the auxiliary edge in E(c;d). The dilation ofthe new set of paths is d and the congestion c. The length of the schedule,T (c; d), is given by the recurrenceT (c; d) � ( T (c; d� log c) + log c� 1 + c d > log c+ 1log c+ c d = log c+ 1and has solution T (c;d) � c(d � 1)= log c. Setting c = d = logN in thisexample gives a routing time of �(log2N= log logN).24
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Figure 9: Example 2.The previous example can be modi�ed to show that the strategies ofsending the packet with the farthest distance left to go or the packet withthe farthest total initial distance to go �rst can also be made to require
(cd= log c) time. We simply extend the paths of the packets winning ateach switch so that they have total (or remaining) distance equal to orgreater than the packets that lose at a switch.4.3 Counterexample to a randomized strategyThe third example shows that the natural strategy of assigning priorities tothe packets at random is not e�ective either.Observation 4.3 For the strategy of assigning each packet a random rankand giving priority to the packet with the lowest rank, there is an N -nodenetwork with diameter O(logN= log logN) and a set of paths with dilationd = O(logN= log logN) and congestion c = O(logN= log logN) where theexpected length of the schedule is 
((logN= log logN)3=2).Proof: As in Example 1, the network consists of many copies of a sub-network. Each subnetwork is constructed so that d = c = k= log k. Asubnetwork consists of a linear chain of length d, with loops of length pdbetween adjacent nodes (see Figure 10). The packets are broken into pdgroups numbered 0 through pd � 1 of pd packets each. The packets in25
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Figure 10: Example 3.group i use the linear chain for ipd steps and then use pd� i loops as theirpath. As in the previous example, we assume that queues have unlimitedcapacity and that at each step a node can send a single packet.If the random ranks are assigned so that the packets in group i havesmaller ranks than the packets in groups with larger numbers, then thepackets in group i delay the packets in group i+1 by d� (i+1)pd+ i steps.Thus the last packet experiences an 
(dpd) = O((k= log k)3=2) delay.Once again the ranks of the packets must have a speci�c order, whichcan be shown to happen with high probability given enough copies of thesubnetwork. As in Observation 4.1, it is not hard to show this requiresk = �(logN).5 AcknowledgementsThanks to Nick Pippenger and David Shmoys for pointing out the relation-ship between packet scheduling and job-shop scheduling.26
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