
Introduction

• Models and complexity measures [18], (Chapters 1-2).

• Some simple examples: broadcast and convergecast [18], (Chapter 3).

Coloring and Maximal Independent Set (MIS).

• Deterministic 3-coloring of oriented trees in O(log∗

n) rounds [18] (Chapter 7).

• Deterministic (∆ + 1)-coloring of graphs in O(log∗

n + 22∆) rounds [18], (Chapter 7).

• Deterministic (∆ + 1)-coloring of graphs in O(log∗

n + ∆2) rounds [15].

• Randomized (∆ + 1)-coloring of graphs in O(log n) rounds [9, 16]

• An Ω(log∗

n) lower bound on 3-coloring a ring [18] (Chapter 7), [15].

• Stronger lower bounds on distributed vertex coloring [13].

• Connections between coloring and MIS [18], (Chapter 8).

• Luby’s randomized algorithm for MIS [18] (Chapter 8).

• Deterministic MIS for unit ball graphs (UBGs) in doubling metric spaces in O(log∗

n) rounds. [11].

• MIS for growth-bounded graphs in O(log ∆ · log∗

n) rounds. [10].

• Distributed edge coloring [7].

• Network decomposition and connection to MIS and coloring [18] (Chapter 22), [1].

Minimum Spanning Trees (MST).

• Distributed MST construction [5].

• Distributed MST construction in sublinear time [18] (Chapter 24), [6, 14].

• Near optimal lower bounds on MST construction [18] (Chapter 24), [19].

Distributed Approximation Algorithms [3].

• Distributed O(log n)-approximation of minimum dominating set (MDS) in polylogarithmic number
of rounds [8].

• Extensions to weakly connected dominating sets [2].

• Distributed approximation for MDS in constant rounds [12].

• Distributed facility location [17].

• Time-approximation trade-offs for approximating an MST [4].
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