Cycle Structure of Permutations

August 31, 2001

1 Introduction

Consider an n-permutation p, start with an element ¢ € [n] and walk through the elements of

[n] in the order
i, p(2), p(p(0)), p(p(P(7))), - - -

Since p is one-one this walk takes us through distinct elements in [n] until we return to i, thus
forming a cycle. If there are any elements in [n] not already visited, we can repeat this process
by starting from an element not already visited. In this manner, p induces a partition of [n] into
disjoint cycles. This set of disjoint cycles is an alternate representation of p and is called the
cycle structure of p.

For example, the permutation (5,3,4,2,6,1) has cycle structure ((1,5,6),(2,3,4)). Combi-
natorica provides two functions ToCycles and FromCycles that translate a permutation into its
cycle structure and back. The following example shows a 10-permutation transformed into its
cycle structure via the function ToCycles. The resulting cycle structure contains 4 cycles, includ-
ing two singletons. When FromCycles is applied to the constructed cycle structure, we get the
original permutation back. This happens because a cycle structure has a unique corresponding
permutation.

In[1]:= ToCycles[{10, 2, 4, 5, 7, 6, 3, 1, 8, 9}]
out[1]= {{10, 9, 8, 1}, {2}, {4, 5, 7, 3}, {6}}
In[2] := FromCycles[%]

Out[2]= {10, 2, 4, 5, 7, 6, 3, 1, 8, 9}

Here are a two more examples that provide more insights into the cycle structure of permutations
and also a few more illustrations of Combinatorica functions.

e Performing a swap on an n-permutation corresponds to multiplying it by a permutation
that has one 2-cycle and (n — 2) 1-cycles. In fact, a permutation with one 2-cycle and
(n — 2) 1-cycles is called a swap or a transposition.

In[3]:= Permutel[{8, 1, 9, 2, 4, 3, 6, 5, 7, 10},
FromCycles[{{1}, {2}, {3}, {4}, {5, 8}, {6}, {7}, {9}, {10}}]
]
Qut[3]= {8, 1, 9, 2, 5, 3, 6, 4, 7, 10}

e A permutation with maximum cycle length 2 is called an involution. Equivalently, an
involution is a permutation that is its own inverse.

In[4]:= Permute[FromCycles[p = {{1, 7}, {2}, {3, 5}, {4}, {6}1}1,
FromCycles [p]
]

Out[4]= {1, 2, 3, 4, 5, 6, 7}

You should ponder over the typical questions (at least for this course) one can ask about
involutions: how many size-n involutions are there? how can we enumerate all size-n
involutions? how can we select, uniformly at random a size-n involution?

2 Application to Sorting

The cycle structure of a permutation plays a crucial role in unexpected places, as this example
will show.

Given an n-permutation p what is the minimum number of swaps needed to sort p? Another
way of asking this question is: what is the smallest sequence of swaps q1, g2, . . . such that

PXqLXgx---=1

As mentioned earlier, if only adjacent transpositions are allowed, exactly as many transpositions
are needed as the number of inversions in the permutation. In arbitrary swaps are allowed,
inversions are not the right measure because a single swap can change the total number of
inversions by a large amount.

We will now show that if p has ¢ cycles then p can be sorted in n — ¢ swaps and this is
the minimum needed. To see this let us first understand the effect that a swap has on the
cycle structure of a permutation. There are two cases depending on whether the elements being
swapped belong to the same cycle or not.

(i) Suppose that p contains the cycle (1,2,3,...,k) and let z and y, 1 < z < y < k, be
the elements being swapped. Swapping z and y splits the cycle into two: (1,2,...,2,y +
1,...,k) and (y,x+1,...,y—1). The “before” and “after” versions of the cycle are shown
below pictorially.

x-1

o ° x-1 o °
X L4 3 X L4 3
x+1 x+1
2 2
° 1 1
° k ° k
° k-1 * k-1
° °
° .
° °
y-1 o y\1 .
\\\y‘. v+l e ° y +1 o ¢

(ii) Suppose that p contains the cycles (1,2,...,k) and (k+1,k+2,...,0) andlet 2, 1 <z <k
and y, k < y < £, be the elements being swapped. Swapping x and y joins the two cycles
into one and the result is (1,2,...,z,y+1,...,6,k+1,k+2,...,y,z+1,...,k). The two
separate cycles and the single cycle that results from the swap are shown below.

e%e % % %
° . ° ° ° . °
° x+1 y-1 k+2 ° x+1 y-1 k+2
° X y k+: ° X y k+
° x-1 Yy+1 | ° X y+1 |
k . . . k . .
Xl . . . \1 . . .
2 ° .
e 0 e 0 o 0 e 0

Thus swapping changes the number of cycles by 1. The goal of sorting can be view as
increasing the number of cycles in p from c to n. It follows that at least n — ¢ swaps are needed
to sort p. The fact that we can find n — ¢ swaps that sort p follows from the fact that as long
as p is not the identity, it has at least one cycle of size 2 or more and from such a cycle a pair
of elements to swap can be arbitrarily chosen. Swapping such a pair of elements increases the
number of cycles by 1.

In the following example we start with a 10-permutation with 4 cycles and swap the elements
3 and 4 to get a permutation with 5 cycles.

In[5]:= ToCycles[
Permute[
FromCycles[{{10, 9, 8, 1}, {2}, {4, 5, 7, 3}, {6}}]1,
FromCycles[{{1}, {2}, {3,4}, {5}, {6}, {7}, {8}, {9}, {10}}]

]

Out[5]= {{10, 9, 8, 1}, {2}, {5, 7, 3}, {4}, {6}}

3 Stirling Numbers of the First Kind

The number of n-permutations with exactly k cycles is denoted [Z] . The numbers [Z] for differ-

ent values of n and k are called the Stirling numbers of the first kind, named after the Scottish
mathematician, James Stirling (1692-1770). As you might expect, there are combinatorial num-
bers called the Stirling numbers of the second kind as well. These will show up in the context
of set partitions. Stirling numbers, along with binomial numbers, harmonic numbers, and Eu-
lerian numbers, are important combinatorial numbers that have the propensity to turn up in
unexpected places.

For certain values of n and k Stirling numbers of the first kind are easy to determine. Here
are some examples.

e For any positive integer n [T] = (n — 1)! because a single cycle is just like a permutation
except that it is invariant under cyclic shifts.

e For any positive integer n, [Z] = 1 because a permutation with n cycles is just the identity
permutation.

e For any positive integer n, [n " 1} = (g) because a permutation with n — 1 cycles has one
2-cycle and (n—2) 1-cycles. It is then just a matter of choosing the elements in the 2-cycle

and that can be done in (3) ways.

e Since a permutation has at least one cycles [g] = 0 for any positive integer n. Also, a
permutation with 0 elements has no cycles and so [2] = 0 for any positive integer k. To

be complete we just decree that [g] =1.

In[6]:= Table[StirlingFirst[n, k], {n, 0, 10}, {k, O, n}] // ColumnForm

Out[6]= {1}
{0, 1}
{0, 1, 1}
{0, 2, 3, 1}
{0, 6, 11, 6, 1}
{0, 24, 50, 35, 10, 1}
{0, 120, 274, 225, 85, 15, 1}
{0, 720, 1764, 1624, 735, 175, 21, 1}
{0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1}
{0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1}
{0, 362880, 1026576, 1172700, 723680, 269325, 63273, 9450, 870, 45, 1}

It is possible that by staring at this table you are able to observe that, like in the case Pascal’s
triangle, each entry depends on two other entries in the table, the one to its north and the one
to its northeast. The precise relationship is given by the beautiful recurrence below.

i = fma) w -]

This recurrence allows us to compute [Z] in general and it is used in the implementation of

the Combinatorica function StirlingFirst. To prove the recurrence partition the set of all
n-permutations with k cycles into a set S; which contains permutations in which n occurs in a
singleton cycle and a set Sz which contains permutations in which n occurs in a cycle of size

2 or more. We now show that the size of S; is [2‘: i] by showing a bijection between S; and

the set of all (n — 1)-permutations with (k — 1) cycles. The bijection is simply obtained: from
each permutation p € S; remove n. This gives an (n — 1)-permutation with (k — 1) cycles. We

now show that the size of the set Sy is (n — 1) [" b 1] . We try the same trick and remove n from

each permutation p € Sy and we get an (n — 1)-permutation with k cycles. So we have defined a
mapping from S, to the set of all (n — 1)-permutations with &k cycles. However, this mapping is
not a bijection. In fact, it is an onto function which maps exactly (n — 1) permutations in Ss to
each element in the range. To see this observe that n can be inserted into an (n — 1)-permutation
with k cycles in exactly (n — 1) ways to get distinct n-permutations with k cycles. So the size of
Sy is (n — 1) times the size of the set of all (n — 1)-permutations with k cycles. This proves the
recurrence. The boundary cases of the recurrence occur when n = 0 or k£ = 0.

The above proof is also a recursive algorithm for generating all n-permutations with exactly
k cycles. The related questions you should give some thought to are:

(i) How do we select a random n-permutation with exactly k cycles, uniformly at random?

(ii) Can we generate all n-permutations with exactly k cycles in “minimum change order” —
an order in which each permutation is one swap away from the previous?

4 Hiding and Revealing Cycles

The parentheses in the cyclic representation of a permutation turn out to be unnecessary, since
the cycles can be unambiguously represented without them. Before dropping the parentheses we
need to bring the cycle structure into a canonical form. Rotate each cycle so that the minimum
element is first and then sort the cycles in decreasing order of the smallest element. We can easily
and unambiguously go back and forth between a canonical cycle structure and a permutation
obtained by dropping the parentheses. The choice of a canonical cycle structure is not unique and
alternate ways of doing this appear in the literature. Combinatorica has a function HideCycles
that drops parentheses in from a cycle structure and gets a permutation.

In the following example, we start with a permutation (6,2,1,5,4,3) and compute its cycle
structure ((6,3,1),(2),(5,4)). The cycles are first rotated to bring the smallest element first
and we get the equivalent cycle structure ((1,6,3),(2),(4,5)). We then order the cycles in
descending order by their first elements to get the canonical cycle structure ((4,5), (2), (1,6, 3)).
Dropping the parentheses from this results in the permutation (4,5,2,1,6,3). Notice that we
started with a 6-permutation, applied ToCycles followed by HideCycles and we ended up with
another 6-permutation. So the composition HideCycles o ToCycles is a mapping from the set
of n-permutations to the set of n-permutations.

In[7]:= ToCycles[{6, 2, 1, 5, 4, 3}]
Out[71= {{6, 3, 1}, {2}, {5, 4}}
In[8]:= HideCycles[{{6, 3, 1}, {2}, {5, 4}}]

Out[8]= {4, 5, 2, 1, 6, 3}

We could drop the parentheses from the cycle structure of a permutation with impunity
because we know that we can reconstruct the cycle structure. In particular, given a permutation
pi = (p1,p2,---,Pn) We want to construct a cycle structure ¢ such that HideCycles applied to
¢ returns p. In going from ¢ to p via HideCycles, we first reworked c¢ into canonical form and
hence each element p; in p that is the minimum among the first ¢ elements of p denotes the
beginning of a new cycle. We will call such elements p; left-to-right minima. For example, in
the permutation (4,5,2,1,6,3), the elements 4, 2, and 1 are left-to-right minima and each of
these is the beginning of a new cycle. Combinatorica has a function RevealCycle that takes a
permutation p and reveals the cycles in it and returns the cycle structure c.

In[9]:= RevealCycles[{4, 5, 2, 1, 6, 3}]

Out[9]= {{4, 5}, {2}, {1, 6, 3}}

So ToCycles and RevealCycles are inverses of each other. When we start with a cycle structure
¢ and pass it successively through ToCycles and RevealCycles, we get ¢ back (except that ¢
is now in canonical form). More importantly FromCycles o RevealCycles is the inverse of
HideCyclesoToCycles implying that each of these is a bijection from the set of n-permutations
to itself.

This bijection has several applications. For example, it implies that the number of n-

permutations with k left-to-right minima is [Z] A more interesting implication is that the

average number of cycles in an n-permutation is ©(logn). We show this by showing that the
average number of left-to-right minima in an n-permutation is ©(logn). This analysis uses
a technique quite common in the analysis of randomized algorithms. Pick an n-permutation
p = (p1,p2,...,pn) uniformly at random. For each i € [n], let a binary random variable X; de-
note whether p; is a left-to-right minima. In other words, X; = 1 if and only if p; is left-to-right

minima. Now note that X = Z?Zl X; is the random variable that denotes the total number
of left-to-right minima p contains. Our goal is to calculate E[X]. By linearity of expectation,
E[X] =Y, E[X;]. Now let r; denote the probability that p; is a left-to-right minima. It is
easy to see that 7 = 1/i. Furthermore, E[X;]=1-7;+0-(1 —r;) =r; = 1/i. It follows that

n

E[X]=} BlXi]=} ri=) 1/i=Hy,

i=1

where H,, is the nth Harmonic number. It is well known that H, = ©(logn) and the claim
follows. The following experiment shows that the above prediction is quite accurate. The 120
5-permutations are scanned, the number of cycles in each is calculated, and the mean of these
numbers is reported.

In[10] := Mean[Map[Length[ToCycles[#]]&, Permutations[5]]] // N
Out[10]= 2.28333
In[11] := HarmonicNumber[5] // N

Out[11]= 2.28333

In the following experiment, we consider 100-permutations. There are too many of them to scan
so we resort to random sampling. We pick a random sample of size 1000 and find the mean cycle
length of these. The result is close to Higo-

In[12]:= Mean[Map[Length[ToCycles[#]]&, Table[RandomPermutation[100], {1000}]11] // N
Out[12]= 5.222
In[13] := HarmonicNumber[100] // N

Out[13]= 5.18738
The fact that the average number of cycles in an n-permutation is H,, can be equivalently stated
as the identity:
"k
n
> o [i] = e

k=1

In effect, what we have done is provide a probabilitic proof of this identity.

