Permutations

August 24, 2001

1 Introduction

An n-permutation is a bijection from [n] to [n]'. When n is unimportant or is obvious from the
context, we drop the n and simply use “permutation.” The two most common ways of writing

a permutation p are (i) as a sequence (p1,p2,---,Pn), where p(i) = p; and (ii) as a 2 X n matrix
11ty t3 ... ip
Pr p2 p3 ... Pn

where p(i;) = p; for j = 1,2,...,n. This form is usually referred to as the two-line notation.

For example,
(341 25
P= 513 4 2
is the permutation p(1) = 3, p(2) = 4, p(3) = 5, p(4) =1, and p(5) = 2. Note that changing the
order of columns in the two-line notation does not change the permutation.

Multiplication. Permutation multiplication is a binary operation, denoted by x, and defined
as p X g = pogq, where o is the standard function composition. In other words, p X ¢ is a function

defined as
(p x q)(i) = p(g(4))-

The composition of two bijections whose domains and ranges are all identical is also a bijection
(verify this!). So p x ¢ is also a bijection from [n] to [n] and hence the set of all [n] permutations
is closed under permutation multiplication. For example, suppose that p = (3,5,1,6,2,4) and
q=1(2,3,4,6,5,1). Then p x ¢ = (5,1,6,4,2,3). To verify this, you need to check that for each
i=1,2,...,6, the resident of the ith slot in p x ¢ is p(q(Z)). Note that ¢ is applied first followed
by p. The Combinatorica function Permute is the permutation multiplication operation.

In[1]:= Permute[{3, 5, 1, 6, 2, 4}, {2, 3, 4, 6, 5, 1}]
OQut[1]= {5, 1, 6, 4, 2, 3}

It is easy to see that permutation multiplication is associative, but not commutative (try to
prove the former and produce a counterexample to show the latter!).

Identity. The identity permutation is (1,2,...,n). We denote this by I,, or simply I, if n is
not relevant in the context. For any permutation p, px I =1 x p = p.

1[n] denotes the set {1,2,...,n}

1 1

Inverse. Every permutation p has an inverse, denoted p~!, such that px p~! = p~ 1 xp =
I. Tt is easy to see that p(i) = j if and only if p~(j) = i. The Combinatorica function
InversePermutation computes the inverse of a permutation.

In[2]:

p = InversePermutation[q = {5, 1, 6, 4, 2, 3}]

Out[2]= {2, 5, 6, 4, 1, 3}

In[3]:= Permute[p, ql

Out[3]= {1, 2, 3, 4, 5, 6}

2 Generating Permutations Lexicographically

The simplest generation problem we will encounter in this course is the problem of generating
permutations. These can be generated in a variety of orders, but the most natural order seems
to be the lexicographic order. Mathematica has a built-in function called Permutations that
generates permutations in lexicographic order.

In[4] := Permutations[3]

Out [4]1= {{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {38, 1, 2}, {3, 2, 1}}
Combinatorica has a function called LexicographicPermutations that performs the same task.

In[5]:= LexicographicPermutations[3]

out[5]= {{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}}

Many combinatorial objects, including permutations, have a pleasing recursive structure that
turns out to be very useful in counting or enumerating them. We use the recursive structure
or permutations to devise an algorithm to enumerate them lexicographically. Start by pulling
out each element of [n] and then prepend the element pulled out to all the permutations of the
remaining n — 1 elements. The pseudocode for the algorithm is as follows:

GenPerms ([n]){
bigList « {};
for i + 1 to n do{
list « GenPerms([n] - {i});
for each permutation p in list do
Prepend i to p;
Append list to bigList;

}

return biglist;

}

You should try implementing this in Mathematica and compare its performance to that of
Permutations and LexicographicPermutations.

More insight is gained into lexicographically ordered permutations by attempting to imple-
ment the above algorithm non-recursively. To do this we need to answer the question: how do
we transform a permutation into its lexicographic successor? Let p be an n-permutation whose
largest decreasing suffix is p[i + 1..n]. Note that this suffix can be as small as a size-1 sequence or
as big as a size-n sequence. If p[i + 1..n] has length n, it means that p= (n,n—1,...,1) and this

permutation has (strictly speaking) no lexicographic successor. So we assume that p[i + 1..n]
has length at most n — 1. Now note that p[i] < p[i + 1] because otherwise we would have a
larger decreasing suffix. This implies that there is an integer j, i + 1 < j < n such that p[j]
is the smallest element in p[i + 1..n] that is larger than p[i]. To get the lexicographic successor
of p, exchange p[i] and p[j] and then reverse p[i + 1..n]. Combinatorica has a function called
NextPermutation that computes the lexicographic successor of a given permutation.

In[6]:= NextPermutation[{9, 10, 3, 2, 4, 5, 8, 7, 6, 1}]

Out[6]= {9, 10, 3, 2, 4, 6, 1, 5, 7, 8}

In this example, (8,7,6,1) is the largest decreasing suffix, 5 is the element just before this, and
6 is the smallest element in the suffix that is larger than 5. The function NextPermutation
first exchanges 5 and 6 and then reverses the suffix (8,7,5,1). The Mathematica code for
NextPermutation is given below.

NextPermutation[l_List] :=
Module[{n = Length[1], i, j, t, p = 1},
i = n-1; While[p[[i]1] > p[[i+1]], i--1;
j = mn; Whilel p[[j1] < p[[ill, j--1;
{p[[il], p[[311} = {p[[j1], pL[[i113};
Join[Take[p, i], Reverse[Drop[p, il1] 1]
]

In the first line after Module, the largest decreasing suffix of the given permutation is found. In

the next line, p[j], the smallest element in the suffix larger than p[i] is found. In the next line,

pli] and p[j] are exchanged. In the last line, the suffix is reversed.
LexicographicPermutations works by simply calling NextPermutation repeatedly

3 Minimum Change Permutations

The work we do in generating permutations lexicographically can be measured by the total
number of exchanges or swaps the algorithm performs. This is simply the sum of the number
of swaps needed in going from a permutation to its successor, summed over all permutations.

The successor of (1,2,...,n—1,n)is (1,2,...,n,n— 1) and so one swap is what we need in this
case. The successor of (1,n,n —1,...,2)is (2,1,3,...,n — 1,n). This transformation requires
one swap to exchange 1 and 2 and [(n — 1)/2| swaps to reverse (n,n —1,...,3,1) for a total of

[(n+1)/2| swaps. These two cases illustrate the cases that need the fewest and the most swaps
respectively. However, this exercise, by itself, gives us rather trivial bounds on the sum: a lower
bound of Q(n!) and an upper bound of O(n - n!).

Tight Bounds. To get tight bounds on this quantity, let us first give it a name. Let I, denote
the total number of swaps needed to generate the the lexicographic sequence of n-permutations.
The lexicographic sequence of n-permutations can be partitioned into blocks — the first block
containing permutations that start with 1, the second block containing permutations that start
with 2, and so on. So there are n blocks and we can view I, as the number of swaps that are
performed within each block plus the number of swaps that are performed at the boundary of
consecutive blocks. Within each block the first element is fixed and deleting this element from
all permutations in a block gives us a lexicographic sequence of permutations of the remaining
n — 1 elements. Since the first element is fixed, the total number of swaps that occur within a
block is I,,_1. Thus the total number of swaps that occur inside all the blocks is nl, 1. Now let
us see how we go from the last permutation in block-¢ to the first permutation in block-(i 4 1).
The last permutation in block-i contains ¢ in the first place followed by the remaining elements

in decreasing order. As illustrated by the worst case example above, it takes | (n+1)/2| swaps to
compute the lexicographic successor of this permutation. This reasoning leads to the following
recurrence relation for I,,, for any integer n > 1:

1
In=nl,_ 1+ (n-1) {n-}- J

2
Obviously, I1 = 0. Here is a simple Mathematica function that computes I,,.

Swaps[1] := 0
Swaps [n_Integer?Positive] := n Swaps[n - 1] + (n - 1) Floor[(n + 1)/2]

As expected I,, grows quite rapidly. Here is a table that shows the first 10 values of I,.
In[7]= Table[Swaps[i], {i, 10}]

Out([7]= {0, 1, 7, 34, 182, 1107, 7773, 62212, 559948, 5599525}
However, the following table which shows the first 20 values of I, /n! is more interesting.

In[8]= Table[Swaps[il/i! // N, {i, 20}]

Out[8]= {0., 0.5, 1.16667, 1.41667, 1.51667, 1.5375, 1.54226, 1.54296, 1.54307,
1.54308, 1.54308, 1.54308, 1.54308, 1.54308, 1.54308, 1.54308,
1.54308, 1.54308, 1.54308, 1.54308}

The above experiment leads to the conjecture that as n — oo, the ratio I,/n! — 1.54308. In
other words, for large n, we perform about 1.5 swaps per permutation, in generating all n-
permutations in lexicographic order. We will figure out how to solve recurrence relations such
as the one above when we get to generating functions. We will be able to show that

I,
lim = = cosh(1) ~ 1.5438.
n—oo n!
The above exercise raises the question: can we generate permutations in such an order that
we perform exactly one swap in going from a permutation to its successor. In other words, can
be generate permutations in minimum change order?

Hamiltonian Paths. It is very useful to think about this problem from a completely different
point of view. Let P, = (V,, E,) be a directed graph with vertex set V;, being the set of all
n-permutations and edge set E, defined as

E, = {(p,q) | q is obtained from p by 1 swap}.

You should verify that this graph has n! vertices and n!-n(n — 1)/2 edges. If g is obtained from
p by a swap then p can be obtained from ¢ by a swap as well and this implies that for any pair
of permutations p and ¢, (p,q) € E, if and only if (¢,p) € E,. So we can equivalently view
P, as an undirected graph with n! vertices and n!-n(n — 1)/4 edges. A Hamiltonian path in a
graph is a simple path that visits every vertex in the graph. A Hamiltonian cycle in a graph
is a simple cycle that visits every vertex in the graph. A Hamiltonian path in P, corresponds
to minimum change ordering of the set of all n-permutations. The question “Can permutations
be listed in minimum change order?” is therefore equivalent to the question “Does P, have
a Hamiltonian path?” Figure 3 shows P3 along with a Hamiltonian path (highlighted by the
thick gray line segments). In fact the first and the last vertices of the path are adjacent and so
this is a Hamiltonian cycle. At first glance this approach seems rather unprofitable because the
problem of finding a Hamiltonian path (or a Hamiltonian cycle) in a graph belongs to the class of
NP-complete problems and is therefore considered computationally intractable. But, examples
we will study later will reveal that the Hamiltonian path point of view helps in two ways:

312

231

Figure 1: A Hamiltonian path in Ps

(i) While there are no computationally tractable necessary and sufficient conditions for a
graph to contain a Hamiltonian path, there are various simple sufficient conditions (that
are not necessary). Occasionally, we will be able to show that a sufficient condition holds
and the graph is Hamiltonian, thereby proving that a minimum change sequence exists.

(ii) Graphs such as P,, derived from combinatorial objects display an abundance of symmetry.
This symmetry makes long paths likely. Some amount of research has been done in trying
to characterize this symmetry and connect this characterization to the problem of testing
for Hamiltonian paths. As we will see later, the main feature of this body of work is a
conjecture that remains tantalizingly open.

Johnson-Trotter Algorithm. It turns out that it is not too hard to enumerate permutations
in minimum change order. In fact, permutations can be enumerated in an order so that each
permutation is obtained from the previous permutation by a adjacent swap. There is a simple
algorithm, called the Johnson-Trotter algorithm that does this.

Suppose p1,p2, - - -, P(n—1)! is a sequence of (n — 1)-permutations listed so that each permuta-
tion differs from the previous by an adjacent swap. To extend this ordering to n-permutations
we start by appending n to p;. Then the element n is moved to the left, one adjacent swap
at a time. When n reaches the first position we have generated n permutations by performing
adjacent swaps. The next permutation is generated by keeping n fixed in the first position and
transforming p; to pe by an adjacent swap. After this n begins its rightward journey, again one
adjacent swap at a time. When n reaches the last position, p» is changed into p3. This continues
until n has traveled across p(,_1y:, by which time all n! permutations have been generated, each
from the previous by an adjacent swap. For example, below is the list of 4-permutations listed

according to the “Johnson-Trotter order:”

