
M A R C H 2 3 - 2 5 , 2 0 1 5

List Comprehensions

Examples to Get Us Started

�  [x**2 for x in range(10)]
 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

�  [str(x)+str(x) for x in range(10)]
 ['00', '11', '22', '33', '44', '55', '66', '77', '88', '99']

�  [str(x)+str(x) for x in range(10) if x%2 == 0]
 ['00', '22', '44', '66', '88']

These are all list comprehensions

�  They provide a flexible, fast, and compact way of
creating new lists from old lists.

�  List comprehensions provide a more compact and

more efficient alternative to explicitly using for-
loops.

�  See Sections 5.1.3 and 5.1.4 (on List
Comprehensions) from Python 3 tutorial at
www.python.org

List Comprehension: Basic Syntax

 [expr for x in list]

Notes:
�  for and in are Python keywords, used just as in for-loops.

�  x is a variable that takes on values of elements in list, in order.

�  expr is Python expression, typically involving the variable x.

�  The expression [expr for x in list] evaluates to a list made up of the
different values that expr takes on for different x.

�  This is similar to the “set builder” notation used in math:
 {x*y | x and y are even}.

List Comprehensions: Syntax with if-clause

 [expr for x in list if bool-expr]

Notes:
�  bool-expr is a boolean expression involving x.

�  The overall expression evaluates to a list of values of
expr evaluated for all values of x in list satisfying the
bool-expr.

�  Example: [str(x)+str(x) for x in range(10) if x%2 == 0]
 evaluates to ['00', '22', '44', '66', '88']

Examples

�  Generating lists of lists.

 [range(x) for x in range(1, 5)]
 Evaluates to: [[0], [0, 1], [0, 1, 2], [0, 1, 2, 3]]

�  All numbers in the range 0..49 containing the digit “7”.

 [x for x in range(50) if "7" in str(x)]
 Evaluates to: [7, 17, 27, 37, 47]

Nested List Comprehensions

Example:
[x*y for x in range(3) for y in range(3)]
[0, 0, 0, 0, 1, 2, 0, 2, 4]

Notes:
�  As in nested loops, for every iteration of the first loop

(the for-x loop), all iterations of the second loop (the
for-y loop) are executed.

Example: Generating Perfect Squares

[x for x in range(100) for y in range(x) if y*y == x]
[4, 9, 16, 25, 36, 49, 64, 81]

Notes:
�  Those x and y values (from their respective lists) that

satisfy the condition y2 = x, are generated.
�  Thus all x values generated in this manner are

perfect squares.

Example: Generating Composites

composites = [x for y in range(2, 10) for x in range(2*y, 100, y)]

Notes:
�  For each y = 2, 3,…, 9, the variable x takes on values that

are multiples of y.
�  For y = 2, the variable x takes on values 4, 6, 8,…, 98.
�  For y = 3, the variable x takes on values 6, 9, 12,…, 99.
�  Thus the values of x generated in this manner are (strict)

multiples of 2, 3, 4,…, 9.
�  This covers all composites in the range 2..99.

Example: Generating Prime Numbers

primes = [x for x in range(2, 100) if x not in composites]

Notes:
�  Primes in the range 2..99 can be obtained by taking the

complement of the generated composites.

Example: Flattening Lists

>>> nestedList = [range(x) for x in range(1, 4)]
>>> nestedList
>>> [[0], [0, 1], [0, 1, 2]]
>>> [y for x in nestedList for y in x]
>>> [0, 0, 1, 0, 1, 2]

Example: Transposing a Matrix

>>> mat = [[3, 0, 1],
 [2, 1, 7],
 [1, 3, 9]]

>>> [[mat[i][j] for i in range(len(mat))] for j in range(len(mat))]
>>> [[3, 2, 1], [0, 1, 3], [1, 7, 9]]

Notes:
�  The expression, which is the first element of the list

comprehension, itself happens to be a list comprehension.
�  Therefore, each element of the constructed list, is a list

itself.

Warning!

�  The danger with list comprehensions is that your
code may become hard to understand, especially
with nested list comprehensions.

�  If by using a list comprehension, you are making
your code hard to understand, then it is time to
desist.

