
J A N 2 6 2 0 1 5

Understanding our first
program

Problem: Converting decimal numbers to binary

�  Given a non-negative integer, convert it into its
binary equivalent.

� Example:
¡  Input: 123 Output: 1111011
¡  Input: 1363 Output: 10101010011
¡  Input: 12 Output: 1100

Our first program

 n = int(input("Enter a positive integer:"))
 while n > 0:

 print n % 2
 n = n/2

Understanding the input statement

n = int(input(”Type a nonnegative integer:"))

 Assignment statement
�  = is the assignment operator

�  n is a variable

�  The stuff on the right hand side is an expression that
gets evaluated and its value gets assigned to the
variable n

Examples of assignment statements

�  n = 9
�  n = n/2
(Assignment operator is not algebraic equality. “/” is “true

division.”)
�  n = n + 1
(A commonly used assignment statement for incrementing

the variable n.)
�  m = n % 2
(m gets assigned 1 if n is odd; otherwise m gets assigned 0.)
�  m = n//5
(“//” is “floor division.”).

The input function

 input(prompt)
�  This function is a built-in Python function and is

always available.

�  The prompt is written to output (screen) and then
the function reads a line from input (keyboard) and
returns what it reads.

�  prompt is an argument to the function input.

Functions in Python

�  When you are first taught (mathematical) functions
in school, you are told to view them as input-output
machines.

�  This is a useful view for functions in Python also.
�  The programmer calls a function with appropriate

inputs, called arguments and the function does
something (we may not know what) and produces an
output.

�  In Python, functions can be built-in (e.g., input()) or
user defined.

input returns a string

Try this code snippet. What happens?

 x = input(“Enter a number:”)
 x = x + 1

 What the user types is read in as a string, the

expression on the right hand side evaluates to a
string and x gets assigned a string.

Data types in Python

�  Every object (e.g., constants, variables) in Python has
a type

�  An object’s type determines what operations can be
performed on that object.

�  Use the Python built-in function type to determine
an object’s data type.

Data types in Python

�  Examples:
 Constant type
 “Enter a number” string
 1034 integer
 55.0 floating point

�  Python has many built-in data types. For now we will work with four

types:
 type Python’s type name

 integer int
 string str
 floating point float
 boolean bool

Type of a variable

�  The type of a variable is the type of what it was most
recently assigned.

Example:
 x = 15
 type(x) int
 x = x*1.0
 type(x) float

 This ability of the same variable to have different
types within a program is called dynamic typing.

Operators and data types

�  The meaning of operators (e.g., +, //) depends on the
data types they are operating on.

 Expression Value Type
 9//2 4 int
 9.0//2 4.0 float
 9/2.0 4.5 float

 9/2 4.5 float
 5 + 1 6 int
 5 + 1.0 6.0 float
 “hello,”+” friend” “hello, friend” string

Conversions between data types

�  Python provides built-in functions for converting
between data types.

�  Examples:
 Expression Value

 int(“320”) 320
 float(“320”) 320.0
 str(134) “134”

Last slide on the first line

n = int(input("Enter a positive integer:"))

1.  input prints the prompt, reads a line of the user’s

input, and returns what is read as a string.

2.  The string returned by input gets converted to an
integer by the function int.

3.  This integer gets assigned to the variable n.

What is the value and type of each expression?

Expression Value Type
10 + (12/2.0)

“12” + “0”

int(“200”)//10

5 + 12/5

str(25//4) + “00”

9876 % 10

str(9876 % 100)

(12/5.0) + (12/5)

You’ll get more practice in the discussion section and in Practice Problem Set 2.

On while-loops

 Line 1
 while boolean expression:
 Line 2
 Line 3
 Line 4

�  while-loops affect the flow of the program, i.e., the order in which

program statements are executed. So while-loops are examples of a
control-flow statements.

�  For the above example the flow of the program is:

Line 1, bool expr (True), Line 2, Line 3, bool expr (True), Line 2, Line 3, bool expr (False), Line 4

Body of while loop

�  Lines 2 and 3 form the body of the while loop

�  Python uses indentation to identify the lines

following the while statement that constitute the
body of the while loop.

Boolean expressions

�  Python has a type called bool

�  The constants in this type are True and False.
 (Not true and false!)

�  The comparison operators:

 < > <= >= != ==
 can be used to construct boolean expressions, i.e.,
expressions that evaluate to True or False.

Boolean expressions: examples

�  Suppose x has the value 10

 Expression Value Type

 x < 10 False bool
 x != 100 True bool
 x <= 10 True bool
 x > -10 True bool
 x >= 11 False bool

Revisiting our program

 n = int(input("Enter a positive integer:"))
 while n > 0:

 print(n % 2)
 n = n//2

�  The boolean expression is True when n is positive and is

False when n is less than or equal to 0.

�  Example: Suppose n is initially 25. Then n takes on the
values (in this order): 25, 12, 6, 3, 1, 0. When n becomes 0,
the program exits the while-loop.

