
F E B 6 T H , 2 0 1 5

One More Version of the
Primality Testing Program

Documenting code

�  Our primality testing program has become
complicated enough that it needs documentation.

�  Programming languages typically allow
programmers to insert “comments” that are ignored
when the program is executed.

�  There are several ways of doing this in Python.

Primality Testing: Version 3

Programmer: Sriram Pemmaraju
Date: Jan 30th, 2012
This program reads a positive integer, greater than 1 and
determines whether this integer is a prime or not.
Version 3

import math

n = int(input("Please type a positive integer, greater than 1: "))

factor = 2 # initial value of possible factor
isPrime = True # variable to remember if n is a prime or not
factorUpperBound = math.sqrt(n) # the largest possible factor we need to test is sqrt(n)

loop to generate and test all possible factors
while (factor <= factorUpperBound):
 # test if n is evenly divisible by factor
 if (n % factor == 0):
 isPrime = False
 break

 factor = factor + 1

Output
if isPrime:
 print(n, " is a prime.”)
else:
 print(n, " is a composite.”)

Discussing the code: Comments in Python

�  The program contains “comments,” i.e., text that is ignored by Python but serves to help the reader
understand the code.

�  Writing code first and then adding comments is backwards! We will never do this again. Now that we
have talked about comments, we will always write comments and code together.

�  Comments are preceded by the “#” symbol.

�  Documenting code using comments is a critical part of programming.

�  Comments are typically provided:
¡  at the beginning of the program,
¡  at the start of a block of code that performs a particular task, e.g., the while-loop that generates

and tests factors,
¡  to document the purpose of variables, etc.

�  Later we will discuss a different mechanism for commenting a Python program called documentation
strings.

Discussing the code: Basic guidelines for
commenting

�  Comments that contradict the code are worse than no comments at
all!

�  Comments that state the obvious (e.g., # This is a while-loop) make
for unnecessary clutter are also worse than no comments at all.

�  For now the comments you write should (i) help the reader
understand your algorithm and (ii) help the reader understand
tricky snippets of code.

�  Comments can also be used to turn off lines of code that were
inserted for the purposes of debugging.

�  Your intended audience for documentation: your classmates, your
graders, yourself a few weeks into the future.

Is using break bad programming?

�  Some programming “purists” think that the use of the
break statement is bad programming practice.

�  Comment from on online discussion on programming:

�  I don’t think using the break statement is bad

programming practice, but yes it needs to be used with
caution.

Generally, breaking out of loops is considered bad form because it
tends to obfuscate your code. It's harder to follow the "flow" of a
program with continue/break thrown in everywhere. It's especially
worse if you use it in nested loops, etc.

An alternative to using break

�  We want to stay in the loop while

 n <= factorUpperBound
(there are more factors to consider)

 and
 isPrime == True

(we have not yet found a factor)

�  We can express this using the boolean operator and

in Python.

Primality testing: Version 3

Programmer: Sriram Pemmaraju
Date: Jan 30th, 2012
This program reads a positive integer, greater than 1 and
determines whether this integer is a prime or not.
Version 3

import math

n = int(input("Please type a positive integer, greater than 1: "))

factor = 2 # initial value of possible factor
isPrime = True # variable to remember if n is a prime or not
factorUpperBound = math.sqrt(n) # the largest possible factor we need to test is sqrt(n)

loop to generate and test all possible factors
while (factor <= factorUpperBound) and (isPrime):
 # test if n is evenly divisible by factor
 if (n % factor == 0):
 isPrime = False

 factor = factor + 1

Output
if isPrime:
 print(n, " is a prime.”)
else:
 print(n, " is a composite.”)

Python boolean operators

�  and, or, and not are the three Python boolean operators.

�  A and B is true only when both A and B are true.

�  Truth table for the and operator:

 A B A and B
 True True True
 True False False
 False True False
 False False False

Examples: play with these

�  (x <= 10) and (x > 4)

�  (x < 4) and (x > 10)

�  (x < 10) and True

�  (x >= 0) and False

The or operator

�  A or B is True when A is True or B is True or both.

�  In other words, A or B is False only when both A and B
are False.

�  Truth table for or operator:

 A B A or B
 True True True
 True False True
 False True True
 False False False

Examples: play with these

�  (x <= 10) or (x > 4)

�  (x < 4) or (x > 10)

�  (x < 10) or True

�  (x >= 0) or False

The not operator

�  This is a unary operator, i.e., it operates on only one
operand.

�  Truth table for the or operator:
 A not A
 True False
 False True

�  Examples:

¡  not (x < 10)
¡  not (x == 10)
¡  not (x>=-10)

How fast is our algorithm?

�  In the worst case, the while-loop in the programs
makes √n iterations.

�  For an input with, say 100 digits, what might the
running time be?

�  n = 10100 . Therefore √n = 1050 . Even if each
iteration of the while-loop took a nanosecond (10-9
seconds), the program would take 3.17 x 1033 years!

Timing Python programs

�  The time module contains functions that allow us to determine
(within the program), how much time different blocks of code take.

�  There are many functions defined in this module. The one we will
use most often is called time and is called with no arguments.

�  So once the time module has been imported, a call to this function
will look like

 time.time()

�  It returns the number of seconds (as f loating point number) elapsed

since 12 am (midnight), Jan 1st, 1970.

Timing Python programs

This is typically how you would time a piece of Python
code.

import time
…
start = time.time()
…
#code you want timed
…
end = time.time()
elapsedTime = end - start

import time
n = 10000000
originalN = n

start = time.time()
while n > 0:
 n = n - 1

end = time.time()
print("It takes", end-start, " seconds for", originalN, "iterations of the while loop.”)

Example

Output:
It takes 1.54960203171 seconds for 10000000 iterations of the while loop.

Timed version of Primality Testing

�  Take a look at the posted program called
primalityTestingTimed.py

�  Here is the output of this program on a 10-digit
prime.

Please type a positive integer, greater than 1: 5915587277
5915587277 is a prime.
The while-loop took 0.0328981876373 seconds.

So how are numbers with 300 digits tested?

�  Based on facts in number theory (an area of
mathematics), several fast primality-testing
algorithms have been developed.

�  Examples: Miller-Rabin test:
¡  This is a randomized algorithm – a step in the algorithm

performed by rolling dice.
¡  The algorithm is not always correct! A composite number may

be classified a prime, with small and tune-able error
probability.

