22C:16 Practice Problem Set 10
Morning Section: Complete before Tuesday, 4-22-2014
Evening Section: Complete before Monday, 4-21-2014

These practice problems are based on the program that plays the word ladders game. This is
called playLaddersGame2.py and is posted on the course website.

C

G

Consider the network of “words” shown above. Suppose that we call the function searchWordNetwork
on this word network with source “A” and target “D”.

1. Show the contents of the reached dictionary and the processed dictionary at the beginning
of each iteration of the while-loop in searchWordNetwork. Assume that each time we pull
an element out of reached using popitem(), we get the element that is alphabetically
largest.

2. Following up on Problem 1, show the contents of the processed dictionary, when it is
returned from searchWordNetwork.

3. Solve Problem 1 again, but now assume that (i) the list of neighbors of each node is in
alphabetical order and (ii) each time we pull an element out of reached using popitem(),
we get the element that was inserted earliest into reached. The implication of assump-
tion (i) is that the for-loops in the function that walk through neighbors will do so in
alphabetical order.

4. Following up on Problem 3, show the contents of the processed dictionary, when it is
returned from searchWordNetwork.

5. The program playLaddersGame2.py takes a pair of 5-letter words and generates a path in
the word network between these (provided at least one such path exists). Now I want you
to write a program makeLaddersGame.py that, when executed, outputs two 5-letter words
along with a message of the type “I can make a word ladder 8 words long, can you beat
that?” Thus, executing makeLaddersGame.py produces a puzzle that the user can then
solve along with an estimate of how many words it took the program to connect the source
and target words.

For the program to be useful the words need to be generated at random, so that each time
the user calls the program a possibly different pair of source-target words are generated.
Also, the program should not generate words that are unreachable from each other. Thus
the algorithm you implement should repeatedly (and randomly) choose word-pairs until it
finds two words that are reachable from each other.



My final note is that to implement makeLaddersGame . py you should use all of the functions
we implemented in playLaddersGame2.py and just write a new main program.




