Objects and Classes
O

» Suppose your program needs to maintain millions of
polygons.

* This is something that c%raphics programs might have to
do because complicated scenes are often constructed
using polygons.

» Each polygon has a number of attributes:
Number of points (vertices) in the polygon,
List of the vertices in the polygon in, say clockwise, order,

Colors of the vertices and colors of the line segments (edges)
connecting consecutive vertices,

Whether the interior is transparent or not....

An object-oriented programming language allows us
to package all of these attributes of a polygon
together into an object.

We could then also define functions (or methods)
that operate on the polygon object.

For example:
deleteVertex, addVertex
rotatePolygon, translatePolygon,

We have already seen examples of built-in objects in
Python: strings, lists, etc.

Example:
L=13,2,9]
L.append(10)

This detines an object called L of class list. Then it
applies the method append to L.

L is a “package” consisting of the list items along
with other information about the list (e.g., its
length).

To some extent, the answer is yes.
Specifically:
class = data type,
object = variable,
method = function
So by defining a class, you are essentially extending
the language by defining a new data type.

Example: By defining a class called polygon you

have created a new data type called polygon. You can
then objects (variables) of class (type) polygon.

Efficiency, with respect to running time and memory
usage is one important focus of programmers.

Another important focus is maintainability.

As software sizes grow into millions of lines (e.g.,
Microsoft Windows OS) of code we want to ensure:
Smooth transition from one version to the next
Smooth transition when software engineers leave the project
and new engineers join the project
Object-oriented programming is one approach to
programming in a disciplined manner.

By defining the class polygon and methods that operate
on instances of the polygon class, you are making a
commitment that:

Objects of the polygon class can be accessed using a certain syntax
(e.g., P.deleteVertex(q)).

The methods have certain specified behaviors.

The internal implementation of the class might change a
lot over time, but the interface and external behavior
remains largely static.

This means that other code that depends on the polygon
class will not suddenly stop working because the
internals of the polygon class have changed.

Objects, classes, etc., as a formal notion in programming we introduced in
the 60s in a programming language called Simula 67.

SmallTalk was designed in the 70s at Xerox Parc and it refined notions
introduced in Simula 67.

In the 90s, object-oriented programming reached a wide audience with the
introduction of C++ and then Java.

Object-oriented programming is nicely suited for programming Graphics
User Interfaces (IéUIS). With the rise of GUIs, object-oriented
programming languages have stayed popular.

Now we have “hybrid” programming languages such as Python, that allow
different styles of programming (e.g., procedural, functional, object-
oriented, etc.)

We want to define a class called point.

Each object of this class represents a point in 2-
dimensional Euclidean space.

We want to be able to write code such as:

p = point(10, 20)

q = point(20, 30)
r=p*q
p.translateX(30)
print p

print p.distance(q)

p = point(10, 20)
q = point(20, 30)

Here we define two objects (variables) of class (type)
point.

(This is similar to assignment x =10or L =[3, 4, 1, 7].)

We need code inside the point class to allow this
type of initialization.

r=p*q

We need code in the point class to define the “*”
for point objects.

Suppose that we want the “*” operator to mean

dot-product of two points; thus, this evaluates to
a number (scalar).

When we define a class, we will often overload
operators to work for objects in the new class.

p.translateX(30)
print p
print p.distance(q)

We need code for two methods (functions) in the
point class, namely translateX and distance.

We also need code that specifies how we want a point
to appear when it is printed.

By ireating the point class, we are essentially adding a new data type called point to
Python.

We can then define objects belonging to the point class (i.e., we can define variables
of type point).

A typical class specifies
a collection of data and
a collection of methods (functions).

In the case of the point class, the data is simply an x-coordinate and the y-
coordinate.

The methods are what we might want to use to manipulate a point.

Thus a class can be viewed as a way of packaging a collection of data and providing
ways to modify the package.

Definition of the point class
class point():

This is the initializing method or constructor for the class.
Most classes will have one or more constructor methods.
Examples: p = point(5, 7) will call this method to construct
an instance p of the point class.
def __init___(self, a, b):

self.x=a

selfy=b

Most classes will have a special method (function) ___init___ called the initialization
method that will be called whenever we want to create a point object.

The function header is:
__init___(self, a, b):

This method is called as p = point(10, 12). The argument 10 corresponds to
parameter a, the argument 12 corresponds to parameter b.

There is no argument corresponding to self. self is a Python keyword that refers to
the object being created.

We use two pieces of data, a variable x and a variable y, in the point class.
In side the method, these two pieces of data are assigned values a and b respectively.

Initialization methods are also called constructors.

Here are function headers for some of the methods
in the point class.

def translateX(self, a):

def translateY(self, a):

def distance(self, p):

These are called using the “dot” syntax such as
p.translateX(10)

Here p corresponds to self in the parameter list and
10 corresponds to a.

Operator overloading refers to situations in which the same
operator has different meanings.

We have already seen operator overloading for “+” because this
refers to numeric addition as well as string concatenation

Python provides names for operators that we can use to overload
them: _add__, sub__, mul__, etc.

These names can be used instead of the actual operators. Try:
p=10
p.__add__(2)

1Look at Section 3.4.8 in Python 2 documentation for the complete
ist.

