
M A Y 5 T H , 2 0 1 4

Objects and Classes

Object-Oriented Programming: Example

�  Suppose your program needs to maintain millions of
polygons.

�  This is something that graphics programs might have to
do because complicated scenes are often constructed
using polygons.

�  Each polygon has a number of attributes:
¡  Number of points (vertices) in the polygon,
¡  List of the vertices in the polygon in, say clockwise, order,
¡  Colors of the vertices and colors of the line segments (edges)

connecting consecutive vertices,
¡  Whether the interior is transparent or not....

Object-Oriented Programming: Example

�  An object-oriented programming language allows us
to package all of these attributes of a polygon
together into an object.

�  We could then also define functions (or methods)
that operate on the polygon object.

�  For example:
¡  deleteVertex, addVertex
¡  rotatePolygon, translatePolygon,
¡  …

Built-in Objects in Python

�  We have already seen examples of built-in objects in
Python: strings, lists, etc.

�  Example:
 L = [3, 2, 9]
 L.append(10)

�  This defines an object called L of class list. Then it
applies the method append to L.

�  L is a “package” consisting of the list items along
with other information about the list (e.g., its
length).

Is this just new jargon for stuff you already know?

�  To some extent, the answer is yes.
�  Specifically:

¡  class = data type,
¡  object = variable,
¡  method = function

�  So by defining a class, you are essentially extending
the language by defining a new data type.

�  Example: By defining a class called polygon you
have created a new data type called polygon. You can
then objects (variables) of class (type) polygon.

Motivation

�  Efficiency, with respect to running time and memory
usage is one important focus of programmers.

�  Another important focus is maintainability.
�  As software sizes grow into millions of lines (e.g.,

Microsoft Windows OS) of code we want to ensure:
¡  Smooth transition from one version to the next
¡  Smooth transition when software engineers leave the project

and new engineers join the project

�  Object-oriented programming is one approach to
programming in a disciplined manner.

Motivation

�  By defining the class polygon and methods that operate
on instances of the polygon class, you are making a
commitment that:
¡  Objects of the polygon class can be accessed using a certain syntax

(e.g., P.deleteVertex(q)).
¡  The methods have certain specified behaviors.

�  The internal implementation of the class might change a
lot over time, but the interface and external behavior
remains largely static.

�  This means that other code that depends on the polygon
class will not suddenly stop working because the
internals of the polygon class have changed.

A Brief History

�  Objects, classes, etc., as a formal notion in programming we introduced in
the 60s in a programming language called Simula 67.

�  SmallTalk was designed in the 70s at Xerox Parc and it refined notions
introduced in Simula 67.

�  In the 90s, object-oriented programming reached a wide audience with the
introduction of C++ and then Java.

�  Object-oriented programming is nicely suited for programming Graphics
User Interfaces (GUIs). With the rise of GUIs, object-oriented
programming languages have stayed popular.

�  Now we have “hybrid” programming languages such as Python, that allow
different styles of programming (e.g., procedural, functional, object-
oriented, etc.)

Example: point class

�  We want to define a class called point.
�  Each object of this class represents a point in 2-

dimensional Euclidean space.
�  We want to be able to write code such as:

p = point(10, 20)
q = point(20, 30)
r = p * q
p.translateX(30)
print p
print p.distance(q)

Review of this code

p = point(10, 20)
q = point(20, 30)

�  Here we define two objects (variables) of class (type)

point.
 (This is similar to assignment x = 10 or L = [3, 4, 1, 7].)

� We need code inside the point class to allow this
type of initialization.

Review of this code

 r = p * q

÷  We need code in the point class to define the “*”
for point objects.

÷  Suppose that we want the “*” operator to mean
dot-product of two points; thus, this evaluates to
a number (scalar).

÷  When we define a class, we will often overload
operators to work for objects in the new class.

Review of this code

p.translateX(30)
print p
print p.distance(q)

�  We need code for two methods (functions) in the

point class, namely translateX and distance.

�  We also need code that specifies how we want a point
to appear when it is printed.

The point class

�  By creating the point class, we are essentially adding a new data type called point to
Python.

�  We can then define objects belonging to the point class (i.e., we can define variables
of type point).

�  A typical class specifies
¡  a collection of data and
¡  a collection of methods (functions).

�  In the case of the point class, the data is simply an x-coordinate and the y-
coordinate.

�  The methods are what we might want to use to manipulate a point.

�  Thus a class can be viewed as a way of packaging a collection of data and providing
ways to modify the package.

The initialization method

Definition of the point class
class point():

 # This is the initializing method or constructor for the class.
 # Most classes will have one or more constructor methods.
 # Examples: p = point(5, 7) will call this method to construct
 # an instance p of the point class.
 def __init__(self, a, b):
 self.x = a
 self.y = b

The initialization method

�  Most classes will have a special method (function) __init__ called the initialization
method that will be called whenever we want to create a point object.

�  The function header is:
 __init__(self, a, b):

�  This method is called as p = point(10, 12). The argument 10 corresponds to
parameter a, the argument 12 corresponds to parameter b.

�  There is no argument corresponding to self. self is a Python keyword that refers to
the object being created.

�  We use two pieces of data, a variable x and a variable y, in the point class.

�  In side the method, these two pieces of data are assigned values a and b respectively.

�  Initialization methods are also called constructors.

Methods in the point class

�  Here are function headers for some of the methods
in the point class.
¡  def translateX(self, a):
¡  def translateY(self, a):
¡  def distance(self, p):

�  These are called using the “dot” syntax such as
 p.translateX(10)

�  Here p corresponds to self in the parameter list and

10 corresponds to a.

Operator overloading in Python

�  Operator overloading refers to situations in which the same
operator has different meanings.

�  We have already seen operator overloading for “+” because this
refers to numeric addition as well as string concatenation

�  Python provides names for operators that we can use to overload

them: __add__, __sub__, __mul__, etc.

�  These names can be used instead of the actual operators. Try:
 p = 10
 p.__add__(2)

�  Look at Section 3.4.8 in Python 2 documentation for the complete

list.

