Understanding our first
program

O

n = int(raw_input("Enter a positive integer:"))
while n > O:

print n % 2

n=n/2

n = int(raw_input("Enter a positive integer:"))

raw_input prints the prompt, reads a line of the
user’s input, and returns what is read as a string.

This string gets converted to an integer by the
function int.

This integer gets assigned to the variable n.

Line 1

while boolean expression:
Line 2
Line 3

Line 4

while-loops affect the flow of the program, i.e., the order in which
program statements are executed.

For the above example the flow of the program is:

Line 1, bool expr (True), Line 2, Line 3, bool expr (True), Line 2, Line 3, bool expr (False), Line 4

Lines 2 and 3 form the body of the while loop

Python uses inc
following the w.

entation to identify the lines
nile statement that constitute the

body of the whi

e loop.

n = int(raw_input("Enter a positive integer:"))
while n > O:

print n % 2

n=n/2

Suppose n has value 35 initially.
Then the sequence of values that n takes on is:
359 17) 87 49 2) 17 O'

When the value of n becomes 0, then the boolean
expression in the while-statement becomes false and the

while-loop ends.

n = int(raw_input("Please type a positive integer: "))

count = 0

while count < n:
print count
count = count + 1

print "Done”

What is the output if the user types 10 in response to the
prompt?

n = int(raw_input("Please type a positive integer: "))
while n > O:

print n

n=n-1

print "Done”

What is the output if the user types 10 in response to the
prompt?

Python has a type called bool

The constants in this type are True and False.
(Not true and false!)

The comparison operators:
< > <= >= !: ==

can be used to construct boolean expressions, 1i.e.,
expressions that evaluate to True or False.

Suppose x has the value 10

Expression
x <10
x 1= 100
x <= 10
x >-10
x>=11

Value
False
True
True
True
False

boo
boo
boo
boo
boo

(12/5) < (12/5.0)
"100" I= 100
"hello" <= "best”

int(150.0) == (15 * 10)

n = int(raw_input("Enter a positive integer:"))
while n > O:

print n % 2

n=n/2

The boolean expression is True when n is positive and is False when n
is less than or equal to o.

h % 2 evaluates to 1 when n is odd and to o when n is even.
n/2 equals n/2 when nis even and it equals (n-1)/2 when n is odd.

Example: Suppose n is initially 25. Then n takes on the values (in this
order): 25, 12, 6, 3, 1, 0. When n becomes 0, the program exits the
while-loop.

How can we put together the bits we generate, in the
correct order, to construct the binary equivalent?

String concatenation!

Expression Value

“0" + "1001" “01001"
“1" + "1001" “11001"

After i iterations of the while loop we have generated
the right most 1 bits of our answer.

Call this the length-1 suffix.

We want to maintain a string that grows as:

» » »

Input is 39.

Output
1

L, OO0 K-

Suffix

wu

nqu
nqqm
“111"
"0111"
“00111"
*100111"

n = int(raw_input("Enter a positive integer:"))
suffix = **
while n > O:
suffix = str(n % 2) + suffix
n=n/2
print suffix

Now suppose that we want a more informative output message:

The binary equivalent of 39 is 100111

Will this work?

n = int(raw_input("Enter a positive integer:"))
suffix = "
while n > O:
suffix = str(n % 2) + suffix
n=n/2
print "The binary equivalent of “, n, " is *, suffix

n = int(raw_input("Enter a positive integer:"))
suffix = ""

originalN = n

while n > O:
suffix = str(n%2) + suffix
nh=n/2

print "The binary equivalent of", originalN, "is", suffix

