Understanding our first
program

O




Given a non-negative integer, convert it into its
binary equivalent.

Example:
Input: 123 Output: 1111011
Input: 1363 Output: 10101010011
Input: 12 Output: 1100



n = int(raw_input("Enter a positive integer:"))
while n > O:

print n % 2

n=n/2



n = int(raw_input(“Type a nonnegative integer:"))

Assignment statement
= is the assignment operator

n is a variable

The stuff on the right hand side is an expression that
gets evaluated and its value gets assigned to the

variable n



n=9
n=n/2

(Assignment operator is not algebraic equality)
h=n+1

(A commonly used assignment statement for incrementing
the variable n.)

m=n%?2
(m gets assigned 1 if n is odd; otherwise m gets assigned 0.)
m=n/5

(Try out this assignment with n set to 11 and then with n set
to 11.0).



raw_input(prompt)
This function is a built-in Python function and is
always available.

The prompt is written to output (screen) and then
the function reads a line from input (keyboard) and
returns what it reads.

prompt is an argument to the function raw_input.



When you are first taught (mathematical) functions
in school, you are told to view them as input-output
machines.

This is a useful view for functions in Python also.

The programmer calls a function with appropriate
inputs, called arguments and the function does
something (we may not know what) and produces an
output.

In Python, functions can be built-in (e.g., raw_input
()) or user defined.



Try this code snippet. What happens?

X = raw_input("Enter a number:")
Xx=x+1

What the user types is read in as a string, the
expression on the right hand side evaluates to a
string and x gets assigned a string.



Every object (e.g., constants, variables) in Python has
a type

An object’s type determines what operations can be
performed on that object.

Use the Python built-in function type to determine
an object’s data type.



Examples:

Constant type

“Enter a number” string

1034 integer

55.0 floating point

Python has many built-in data types. For now we will work with four
types:
type Python’s type name
int
str
float

boolean bool



The type of a variable is the type of what it was most
recently assigned.

Example:
x=1H
type(x) int
x=x*10
type(x) float

This ability of the same variable to have different
types within a program is called dynamic typing.



The meaning of operators (e.g., +, /) depends on the
data types they are operating on.

Expression Value Type
9/2 4 int
9.0/2 4.5 float
9/2.0 4.5 float
5+ 1 6 int
5+ 1.0 6.0 float

"hello,"+" friend" “hello, friend” string



Python provides built-in functions for converting
between data types.

Examples:
Expression Value
int("320") 320
float("320") 320.0

str(134) "134"



n = int(raw_input("Enter a positive integer:"))

raw_input prints the prompt, reads a line of the
user’s input, and returns what is read as a string.

This string gets converted to an integer by the
function int.

This integer gets assigned to the variable n.



Expression Value Type
10 + (12/2.0)

"12" 4 "Q"
int("200")/10
(Float(12)/5) + 5
str(25/4) + “00"
9876 % 10
str(9876 % 100)

(12/5.0) + (12/5)

You’ll get more practice in the discussion section and in Practice Problem Set 2 and in
Homework 1.



Line 1

while boolean expression:
Line 2
Line 3

Line 4

while-loops affect the flow of the program, i.e., the order in which
program statements are executed.

For the above example the flow of the program is:

Line 1, bool expr (True), Line 2, Line 3, bool expr (True), Line 2, Line 3, bool expr (False), Line 4



Lines 2 and 3 form the body of the while loop

Python uses inc
following the w.

entation to identify the lines
nile statement that constitute the

body of the whi

e loop.



Python has a type called bool

The constants in this type are True and False.
(Not true and false!)

The comparison operators:
< > <= >= !: ==

can be used to construct boolean expressions, 1i.e.,
expressions that evaluate to True or False.



Suppose x has the value 10

Expression
x <10
x 1= 100
x <= 10
x >-10
x>=11

Value
False
True
True
True
False

boo
boo
boo
boo
boo




n = int(raw_input("Enter a positive integer:"))
while n > O:

print n % 2

n=n/2

The boolean expression is True when n is positive and is
False when n is less than or equal to o.

Example: Suppose n is initially 25. Then n takes on the
values (in this order): 25, 12, 6, 3, 1, 0. When n becomes 0,
the program exits the while-loop.



