
F E B 5 T H , 2 0 1 4

A Few versions of the Primality
Testing Program

Primality Testing: Version 0

n = int(raw_input("Please type a positive integer, greater than 1: "))

factor = 2
isPrime = True

while factor < n:
 if (n % factor == 0):
 isPrime = False

 factor = factor + 1

if isPrime:
 print n, " is a prime."
else:
 print n, " is a composite."

Recall our “almost Python” code for listing primes

N = int(raw_input())

n = 2
while n <= N:
 if n is a prime:
 print n
 n = n + 1

�  We are now ready to replace “if n is a prime” with actual

Python code.

Program for listing primes

N = int(raw_input())

n = 2
while n <= N:

 factor = 2
 isPrime = True

 while factor < n:
 if (n % factor == 0):
 isPrime = False

 factor = factor + 1

 if isPrime:
 print n

 n = n + 1

This is the code for
primality testing.

This is an example of code with
nested loops, i.e., a while-loop
inside a while-loop.

Nested loops example

�  Let is figure out what this program prints.

i = 1
while i < 10:
 j = 2
 while j < 10:
 print i, j
 j = j + i

 i = i + 3

Outer while-loop

Inner while-loop

Main idea: For every iteration of the outer
loop, the inner loop goes through all its
iterations.

Now back to primality testing: an easy improvement

�  As soon as we discover that a “candidate factor” is
actually a factor of n, we know that n is a composite.

�  We can therefore exit the loop at this point and not
consider any more “candidate factors.”

�  The break statement provides a convenient way to
exit a while-loop even before the boolean expression
in the while-statement is falsified.

Discussing the code: The break statement

�  The break statement forces the program to exit out
of the smallest enclosing while-loop (or for-loop).

�  Example:
 n = 10
while n < 20:
 if n % 7 == 0:
 break
 n =n + 1
print n

Primality Testing: Version 1

n = int(raw_input("Please type a positive integer, greater than 1: "))

factor = 2
isPrime = True

while factor < n:
 if (n % factor == 0):
 isPrime = False
 break
 factor = factor + 1

if isPrime:
 print n, " is a prime."
else:
 print n, " is a composite."

Understanding the Improvement

�  If the input is a composite, then the break statement
provides some savings in running time because the
program does not have to run through all candidate
factors 1 through N-1.

¡  Example: 987654321 is a composite and
 987654321 = 3 x 329218107.
 So the break statement causes the loop to iterate twice.
 Without the break the loop would iterate about a billion times.

�  For prime number inputs, there is no speed-up.

Another Improvement

�  A number n does not have any factors larger than n/2,
except itself. So we could stop generating candidate
factors at n/2.

�  But wait, we can do much better!
 We know √n x √n = n. Hence, if n has a factor larger
 than √n, then it has a factor smaller than √n also.

�  This means that only factors 2, 3,…, floor(√n) need to be
considered.

Example

�  Say n = 123. Now √123 = 11.090536506409418.

�  So if 123 has a factor greater than 11.09, then it has
factor less than 11.09.

�  This means in looking at “candidate” factors, we only
need to look at numbers 2, 3, …, 11.

Primality Testing: Version 2

import math

n = int(raw_input("Please type a positive integer, greater than 1: "))

factor = 2
isPrime = True
factorUpperBound = math.sqrt(n)

while factor <= factorUpperBound:
 if (n % factor == 0):
 isPrime = False
 break

 factor = factor + 1

if isPrime:
 print n, " is a prime."
else:
 print n, " is a composite."

Modules in Python

�  A module in Python is a file that defines a collection of
related functions.

�  All the functions in a module can be used after the
module has been imported, using the import statement
(usually at the beginning of the program).

�  A function f in a module m is called as
 m.f(arguments).

 For example, the sqrt function in the math module is
 called as math.sqrt(n).

The math module

�  Contains many functions:
¡  Power and logarithmic functions
¡  Trignometric functions
¡  Hyperbolic functions
¡  Mathematical constants

�  Examples:
¡  math.log10(x): returns the logarithm to the base 10 of x.
¡  math.pow(x, y): returns x raised to the power of y.

Write a program that reads a positive integer and outputs
the number of digits in the integer.

�  Version with while-loops

n = int(raw_input("Enter a positive integer: "))

counter = 0
while n > 0:
 counter = counter + 1
 n = n / 10

print counter

Example Problem

Version with math functions

import math

n = int(raw_input("Enter a positive integer: "))
print int(math.log10(n)+1)

Questions

�  How do we know what modules Python supports?
�  How do we know what functions Python’s math modules supports?

Answers:
�  For all matters related to Python visit

 http://docs.python.org/2/
 This is the authoratative source on Python. I visit this website
 all the time when I program in Python.
�  python.org contains a Python tutorial that is a great reference.
�  Section 9.2 is on the math module and contains a list of math functions available in

the module.
�  There is a module index that lists all modules that Python 2.7.3 comes with.
�  This is a good time for you to look over parts of the Python tutorial (e.g., 3.1.1

Numbers, 3.1.2 Strings, 3.2 First Steps Towards Programming, 4.1 If statements).

Back to primality testing

How much improvement do we get from considering “candidate factors”
only up till square root of n?

�  To answer these types of questions, a visit to “The Prime Pages” at

http://primes.utm.edu/ is a good idea.
�  Here you will see lots of lists of primes, including a list of the first 50

million primes.
�  982,451,653 is the 50 million-th prime; square root of this is roughly

31,344.
�  So the difference is about 1 billion iterations versus about 31 thousand

iterations!
�  We will return to this issue of how much speed-up we get when we

learn to time our programs in the next lecture.

