
F E B 3 2 0 1 4

Programming Problem 2:
Primality testing

Our second programming problem

List Primes
 Given a positive integer N, generate all prime

numbers less than or equal to N.

Example:
Input: 100
Output: 2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71 73
79 83 89 97

Here is a list of Python ideas this example will lead
us to…

�  More control flow statements: break
�  Using modules in Python
�  The math module and useful functions in it
�  Boolean operators: and, or, not
�  Timing Python programs: time module
�  Nested loops
�  A second look at variable and expressions
�  More on numeric data types in Python

Why do computer scientists care about prime numbers?

�  Our digital life depends on the security of information that we send over
the internet.

�  Security of information is made possible by encryption methods.

�  One of the most well known encryption methods is the RSA algorithm (R =
Ron Rivest, S = Adi Shamir, and A = Leonard Adleman).

�  The first step of the RSA algorithm is to find two large primes p and q and
compute their product n = p*q.

�  “Large” here could mean 300 digits or so.

�  So primality testing (i.e., checking whether a given positive integer is a
prime) is a computational problem that has attracted a lot of attention.

Basic Algorithmic Idea

1.  Consider each integer n = 2, 3, 4, …, N.

2.  Check if n is a prime and if so print it.

“Almost” Python code

N = int(raw_input())

n = 2
while n <= N:
 if i is a prime number:
 print n
 n = n + 1

�  This is a standard way of using a while-loop to walk through a sequence of integers.

�  If we knew how to check if n is a prime, we would be done. So we should now solve
the primality testing problem.

�  Thus we have reduced our original problem into a “smaller” problem. This is a
standard algorithmic technique in computer science.

Algorithmic Idea: Primality Testing

�  Generate all “candidate” factors of n, namely
 2, 3, …, n-1

�  For each generated “candidate” factor, check if n is
evenly divisible by the “candidate” factor (i.e., the
remainder is 0).

�  If a “candidate” factor is found to be a real factor,
then n is composite.

�  If no “candidate” factor is found to be a real factor,
then n is a prime.

Primality testing algorithm in pseudocode

1.  Input n
2.  For each candidate_factor = 2, 3, …, n-1 do the

following
3.  if n is evenly divisible by candidate_factor then
4.  remember that n is a composite

5.  If we have detected that n is a composite
6.  output that n is a composite
7.  Otherwise output that n is a prime

Python code (Version 0)

number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
while(factor <= number - 1):
 if(number % factor == 0):
 isPrime = False

 factor = factor + 1

if(isPrime):
 print number, "is prime“

else:
 print number, “is composite”

Boolean Variables

�  This program uses the boolean variable isPrime to
remember if the input is a prime.

�  Notice that you don’t have to say: isPrime == True
�  In general, boolean variables are quite useful for

remembering situations that occurred in the
program, for later reference.

�  Questions:
¡  What if we had not initialized isPrime to True?
¡  Could we have used a boolean variable called isComposite to

remember that the input is a composite, rather than a prime?

