A Second Look:

constants, data types, variables, expressions,....

O

Now that we have solved our second programming
problem, let us revisit a bunch of topics:

Data types

Variables

Expressions

Key words

Built-in functions
Modules

Control-flow statements

Data types

O

Python supports four numeric data types:
plain integers,
long integers,
floating point numbers, and
complex numbers.

Plain integers, i.e., objects of type int, are those that
fit in 32 bits or 64 bits (depending on the operating
system).

A bit (short for binary digit) is the smallest unit of
storage in a computer.

A byte is 8 bits

Depending on the operating system on your
machine, an int type in Python may be stored:
in 4 bytes (or 32 bits) or
in 8 bytes (or 64 bits).

The ﬁys module contains information about the largest possible integer on your
machine.

Try:
import sys
sys.maxint

On my machine this showed me
9223372036854 775807

Why? To find out, let us look at the binary equivalent of this number. Try:
X = sys.maxint
bin(x)

Note: bin(x) is a built-in Python function that returns the binary equivalent of a
given integer. This is similar to the first Python program we wrote.

On my machine the binary equivalent of sys.maxint is:

'0op11Y°

The “Ob” at the beginning of the string is Python’s way of
indicating that this is a binary string.

The “Ob” is followed by 63 1’s. This tells me that my
machine is using 8 bytes (64 bits) to store objects of type
int.

Thus the largest possible int object is
20 4 ol + 22 4 | 4 262 =963 _1=0223372036854775807

The range of values that a variable of type int can take is from
-(sys.maxint + 1) to sys.maxint.

The slight asymmetry between the lower limit and the upper limit is due to
the way negative numbers are represented in binary in computers.

What would happen if you tried?
X = sys.maxint
x=x+1

In many programming languages this would cause x to take on weird
values and this situation is called an integer overflow.

But, Python has a very nice way of handling this situation!

Python provides a type called long that can be used to
represent integers that have arbitrarily large magnitude.

If you tried:
X = gys.maxint
X=X+1

the type of the variable x would automatically change
from int to long, as soon its value exceeded the int
upper limit.

The programmer would not notice any difference
because this type change would just happen behind the

SCENeES.

A long constant can be explicitly specified by

appending an L at the end of the integer. Try
x =875L

type(x)

Operations can be performed on a mix of long and
int objects; the type of the answer will be the “larger”
type, 1.e., long. Try:

x =100 + 200L

v = 1ong(10) + 1000

Numbers with decimal points are easily represented in
binary:

0.56 (in decimal) = 5/10 + 6/100

0.1011 (in binary) = ¥/2+0/4 + 1/8 +1/16

The it bit after the decimal point has place value 1/2.
Example: 0.1101 = Y2 + Y4 + 1/16 = 13/16 = 0.8125

However, not all real numbers (even rational numbers)
can be represented exactly by finite sums of these
fractions.

Try
0.1+0.2
Adding 0.1 ten times
0.1+0.2-0.3 == 0.0
sum = 0.1
while sum I= 1:
sum = sum + 0.1

In general, never test for equality of floating point
numbers; test for closeness.

This is a major issue in graphics. Geometric primitives
such as: are these three points on a line? need to be
implemented carefully.

° Try
import sys
sys.float_info

» You will get lots of information on floating point numbers on your
system.

largest floating point number
maximum representable power of 10
smallest positive number that can be represented

maximum number of digits after decimal point that might be correctly
represented.

» To get the maximum floating point number use
sys. float_info.max

Our discussion has completely ignored a very
important class of data types in Python called
sequence types.

There are seven sequence types in Python: strings,
Unicode strings, lists, tuples, bytearrays, buffers,
and xrange objects.

Later we will study study strings, lists, and tuples in
more detail.

There are many powerful built-in operations on
sequence types provided by Python.

Stay tuned for details!

