
F E B 1 0 T H 2 0 1 4

A Second Look:
constants, data types, variables, expressions,….

More in-depth discussion

Now that we have solved our second programming
problem, let us revisit a bunch of topics:

�  Data types
�  Variables
�  Expressions
�  Key words
�  Built-in functions
�  Modules
�  Control-flow statements

Data types

�  We have seen four data types thus far:

¡  int: -90, 8987

¡  float: 9.98, -3.54

¡  str: “hello”, “a”

¡  bool: True, False

Numeric data types

�  Python supports four numeric data types:
¡  plain integers,
¡  long integers,
¡  floating point numbers, and
¡  complex numbers.

�  Plain integers, i.e., objects of type int, are those that
fit in 32 bits or 64 bits (depending on the operating
system).

Bits and bytes

�  A bit (short for binary digit) is the smallest unit of
storage in a computer.

�  A byte is 8 bits

�  Depending on the operating system on your
machine, an int type in Python may be stored:
¡  in 4 bytes (or 32 bits) or
¡  in 8 bytes (or 64 bits).

Exploring the limits of the int type

�  The sys module contains information about the largest possible integer on your
machine.

�  Try:
 import sys

 sys.maxint

�  On my machine this showed me
 9223372036854775807

�  Why? To find out, let us look at the binary equivalent of this number. Try:
 x = sys.maxint

 bin(x)

�  Note: bin(x) is a built-in Python function that returns the binary equivalent of a

given integer. This is similar to the first Python program we wrote.

Exploring the limits of the int type

�  On my machine the binary equivalent of sys.maxint is:
 '0b111’

�  The “0b” at the beginning of the string is Python’s way of
indicating that this is a binary string.

�  The “0b” is followed by 63 1’s. This tells me that my
machine is using 8 bytes (64 bits) to store objects of type
int.

�  Thus the largest possible int object is
 20 + 21 + 22 + … + 262 = 263 – 1 = 9223372036854775807

Beyond the range of int

�  The range of values that a variable of type int can take is from
 -(sys.maxint + 1) to sys.maxint.

�  The slight asymmetry between the lower limit and the upper limit is due to
the way negative numbers are represented in binary in computers.

�  What would happen if you tried?
 x = sys.maxint

 x = x + 1

�  In many programming languages this would cause x to take on weird

values and this situation is called an integer overflow.

�  But, Python has a very nice way of handling this situation!

The long type

�  Python provides a type called long that can be used to
represent integers that have arbitrarily large magnitude.

�  If you tried:
 x = sys.maxint

 x = x + 1

 the type of the variable x would automatically change
 from int to long, as soon its value exceeded the int

 upper limit.
�  The programmer would not notice any difference

because this type change would just happen behind the
scenes.

A few words on long type

�  A long constant can be explicitly specified by
appending an L at the end of the integer. Try

 x = 875L

type(x)

�  Operations can be performed on a mix of long and

int objects; the type of the answer will be the “larger”
type, i.e., long. Try:

 x = 100 + 200L

 y = long(10) + 1000

The float type

�  Numbers with decimal points are easily represented in
binary:
¡  0.56 (in decimal) = 5/10 + 6/100
¡  0.1011 (in binary) = ½+0/4 + 1/8 +1/16

�  The ith bit after the decimal point has place value 1/2i.

�  Example: 0.1101 = ½ + ¼ + 1/16 = 13/16 = 0.8125

�  However, not all real numbers (even rational numbers)
can be represented exactly by finite sums of these
fractions.

Be wary of floating point errors

�  Try
¡  0.1+0.2
¡  Adding 0.1 ten times
¡  0.1+0.2-0.3 == 0.0
¡  sum = 0.1
 while sum != 1:
 sum = sum + 0.1

�  In general, never test for equality of floating point
numbers; test for closeness.

�  This is a major issue in graphics. Geometric primitives
such as: are these three points on a line? need to be
implemented carefully.

Range of float

�  Try
 import sys

 sys.float_info

�  You will get lots of information on floating point numbers on your

system.
¡  largest floating point number
¡  maximum representable power of 10
¡  smallest positive number that can be represented
¡  maximum number of digits after decimal point that might be correctly

represented.

�  To get the maximum floating point number use

 sys. float_info.max

Sequence Types

�  Our discussion has completely ignored a very
important class of data types in Python called
sequence types.

�  There are seven sequence types in Python: strings,
Unicode strings, lists, tuples, bytearrays, buffers,
and xrange objects.

�  Later we will study study strings, lists, and tuples in
more detail.

�  There are many powerful built-in operations on
sequence types provided by Python.

�  Stay tuned for details!

