CS:1210 (22C:16) Homework 1
Due via ICON on Thursday, Feb 13th, 4:59 pm

What to submit: Your submission for this homework will consist of three text files, named
hwla.py, hwib.py, and hwic.py. These should contain Python programs for Problems (a), (b),
and (c) respectively. These files should each start with with a comment block containing your
name, section number, and student ID. You will get no credit for this homework if your files
are named differently, have a different format (e.g., docx), and if your files are missing your
information.

(a)

Write a Python program that reads a binary number as input and outputs the equivalent
decimal number. For example, if the input is 11001 then the output should be 25. You
should assume that the input consists of a contiguous sequence of 0’s and 1’s and nothing
else. In other words, your program need not consider possible errors in the input.

When your program is run in Wing, the session in the Python shell should look like:

[evaluate hwla.py]
11001
25

Note that the program is somewhat minimal in the output it produces; it does not produce a
prompt while waiting for input and it does not produce an output message, just the answer.
Your program should behave exactly like this because your programs will be automatically
graded to a large extent and any other type of behavior, even if it is technically correct,
will throw our grading scripts off and you will end up losing points.

A positive integer n is called an abundant number if its factors, excluding itself, add up
to a quantity greater than n. For example, 12 is an abundant number because its factors
excluding itself are 1, 2, 3, 4, and 6 and 1 +2+ 3+ 4+ 6 = 16. You can verify that 18
is also an abundant number. Mathematicians interested in number theory have studied
abundant numbers; follow the link http://en.wikipedia.org/wiki/Abundant_number to
take a look at Wikipedia’s page on abundant numbers.

Write a Python program that reads a positive integer N and outputs a list of all abundant
numbers less than or equal to V. For example, the above mentioned Wikipedia page on
abundant numbers lists 12, 18, 20, 24, 30, 36, 40, 42, 48 as all the abundant numbers less
than or equal to 50. So your program should produce this list ad output if the input is 50.
In other words, when your program is run in Wing, the session in the Python shell should
look like:

[evaluate hwilb.py]
50
12
18
20
24
30
36
40
42
48



The first number in the above list is the input and the sequence of numbers after that
is the list of all abundant numbers less than or equal to 50. As is Problem (a) you can
assume that there are no errors in the input. In other words, the input is guaranteed to
be a positive integer.

Run length encoding is very simple form of data compression that is best illustrated with an
example. Suppose you want to transmit the string AAAAABBBBBBBBCC to a friend. Instead
of sending this string as is, you could compress it to 5A8B2C and send the smaller string.
The smaller string will tell your friend that the original string consists of 5 A’s followed by
8 B’s followed by 2 C’s. This type of compression is called run length encoding because runs
in the data (i.e., contiguous subsequences consising of the same character) can be encoded
as a count followed by the data item.

For this problem you are asked write a program that reads input consisting of a string
that is run length encoded. Your program is expected to then output the original (i.e.,
unencoded) string. For example, if the input to your program is

O QNITmOE O

then your program should produce the string AAAAABBBBBBBBCC as output. The 0 at the
end of your input is being used to indicate that there is no further input. Later, when your
Python skills are more developed, you will be able to read 5A8B2C as a single string and
break it up into its constituent parts. For now, you can assume that the input is nicely
specified in the format:

countl
stringl
count?2
string2

countk
stringk
0

Corresponding to the above input, your program should produce a string that starts with
countl copies of stringl, followed by count2 copies of string2, etc. As in previous
problems, you can assume that there will be no errors in the input. Also, as in previous
problems, your program should not produce a prompt when waiting for input and it should
not produce any output except the answer.




