
22C:16 CS:1210 Exam 2
April 4th, 6:30 pm to 8:30 pm

Instructions:

• This is an open notes exam and you have 2 hours to complete it. There are 4 problems in
the exam and these appear on 6 pages. The exam is worth 130 points (13% of your grade).

• Make sure that you do not have any electronic devices (laptops, phones, calculators, dic-
tionaries, etc.) on your desk; you are not allowed to access these during your exam.

• Write as neatly as you can.

• Show all your work, especially if you want to receive partial credit.

Name:

Circle your section:

SCA (M, W evening) A01 (8:30-9:20) A02 (11-11:50 MH) A03 (11-11:50 SH)

A04 (12:30-1:20) A05 (2:00-2:50) A06 (5:00-5:50)

1. (40 points) Evaluate these expressions. For parts (h) and (i) suppose that

L = [100, ["hello", "bye"], 1000, [[1, 2], [2, 3], [3, 4]], 1000, 900L].

For part (j) suppose that

J = [["This", ["is", "a"]], "nested", ["list", "with"], ["several", [["different"]]], ["levels", "of"], "nesting"].

(a) range(2, 11, 3)

(b) [y-x for x in range(3) for y in range(x, 4)]

(c) "".join("ok sure".split())

1

(d) range(5)[::-2]

(e) (range(5)+range(5)[::-1]).count(1)

(f) "".join([chr(ord(x)+1) for x in "best"])

(g) " San Francisco".strip().startswith("San")

(h) L[3].index([2,3])

(i) [y for x in L if type(x) == list for y in x]

(j) [x.split("ste") for x in J if "nest" in x]

2

2. (30 points) In this problem you will execute code by hand and figure out what output is
produced.

(a) Write down the output produced when the following function is called as
parseSentences(["This is ok", "But this is not"])

def parseSentences(L):

wordList = ["".join(x.split()) for x in L]

print wordList

rotatedList = ["".join([chr(ord(y)+1) for y in x])

for x in wordList]

print rotatedList

(b) Write down the output produced when the following function is called as
removeOutliers([15, 2, 5, 1, 4, 15])

def removeOutliers(L):

mean = sum(L)/float(len(L))

for i in range(len(L)):

if L[i] > 2*mean:

del L[i]

print L

if i > len(L)-1:

break

3

3. (30 points) In this problem you will complete partially specified code.

(a) In the partially completed code below, I provide a function called processFile. This
function is required to read a given file, line by line and ignore any line containing a
number (strictly) greater than 100. In addition, the function is required to store the
numbers in each of the remaining lines in lists and return one large list containing all
of these lists.

For example, if the input file is

300, -10, -10

12 , 16, 99

-22, 100 , 100

1000, 1, 2, 3, 5

then the function should return
[[12, 16, 99], [-22, 100, 100]]

Fill in the three blanks in the code below to complete it.

def processFile(filename):

Open the given file

f = open(filename)

Initialize masterList

masterList = []

Process each line in the file

for line in f:

Extract all the integers in the line into a list L

L = __

Use a list comprehension to construct a boolean list

corresponding to L indicating which elements are > 100.

For example if L = [10, 200, 11] then the constructed

boolean list will be [False, True, False].

discardList = __

If there are no True values in discardList then

append L to the masterList

if _______________________________________:

masterList.append(L)

return masterList

4

(b) Two strings s1 and s2 are said to be similar if (i) s2 is obtained from s1 by replacing
one character by another or (ii) s2 is obtained from s1 by the deletion or the insertion
of a single character. For example, strings "sweet" and "tweet" are similar by rule
(i) and strings "sweep" and "seep" are similar by rule (ii).

Below, I have partially implemented a function that determines if a given pair of
strings are similar. Complete the three blanks in this function.

Returns True if s2 is obtained from s1 by substituting exactly one

character for another or by deleting exactly one character or by

inserting exactly one character.

def similar(s1, s2):

If the difference in lengths of s1 and s2 is

more than 1, return False

if abs(len(s1) - len(s2)) > 1:

return False

Check if s2 is obtained from s1 with one substitution

if len(s1) == len(s2):

for i in range(len(s1)):

Check if s1 without the i-th character equals

s2 without the i-th character

if __:

return True

Check if s2 is obtained from s1 by one deletion

if len(s1) > len(s2):

for i in range(len(s1)):

Check if s1 without the i-th character equals s2

if __:

return True

Check if s2 is obtained from s1 by one insertion

if len(s2) > len(s1):

for i in range(len(s2)):

Check if s2 with the i-th character removed equals s1

if ___:

return True

return False

5

4. (30 points) Write a function called maxSumSubsequence that takes as parameter a list L
of integers and returns a contiguous slice of L whose sum is maximum among all contiguous
slices. For example, the function call

maxSumSubsequence([-1, 2, 3, -2, 4, -10])

should return the slice [2, 3, -2, 4] because this contiguous slice sums to 7 and no other
(contiguous) slice has a larger sum.
Note: My code for this is 8 lines long, yours should not be too much longer.

6

