
M A Y 6 T H 2 0 1 3

The point class

The point class

�  By creating the point class, we are essentially adding a new data type called point to
Python.

�  We can then define objects belonging to the point class (i.e., we can define variables
of type point).

�  A typical class specifies
¡  a collection of data and
¡  a collection of methods (functions).

�  In the case of the point class, the data is simply an x-coordinate and the y-
coordinate.

�  The methods are what we might want to use to manipulate a point.

�  Thus a class can be viewed as a way of packaging a collection of data and providing
ways to modify the package.

The initialization method

Definition of the point class
class point():

 # This is the initializing method or constructor for the class.
 # Most classes will have one or more constructor methods.
 # Examples: p = point(5, 7) will call this method to construct
 # an instance p of the point class.
 def __init__(self, a, b):
 self.x = a
 self.y = b

The initialization method

�  Most classes will have a special method (function) __init__ called the initialization
method that will be called whenever we want to create a point object.

�  The function header is:
 __init__(self, a, b):

�  This method is called as p = point(10, 12). The argument 10 corresponds to
parameter a, the argument 12 corresponds to parameter b.

�  There is no argument corresponding to self. self is a Python keyword that refers to
the object being created.

�  We use two pieces of data, a variable x and a variable y, in the point class.

�  In side the method, these two pieces of data are assigned values a and b respectively.

�  Initialization methods are also called constructors.

Methods in the point class

�  Here are function headers for some of the methods
in the point class.
¡  def translateX(self, a):
¡  def translateY(self, a):
¡  def distance(self, p):

�  These are called using the “dot” syntax such as
 p.translateX(10)

�  Here p corresponds to self in the parameter list and

10 corresponds to a.

Operator overloading in Python

�  Operator overloading refers to situations in which the same
operator has different meanings.

�  We have already seen operator overloading for “+” because this
refers to numeric addition as well as string concatenation

�  Python provides names for operators that we can use to overload

them: __add__, __sub__, __mul__, etc.

�  These names can be used instead of the actual operators. Try:
 p = 10
 p.__add__(2)

�  Look at Section 3.4.8 in Python 2 documentation for the complete

list.

Operator Overloading in the point class

 def __add__(self, other):
 return point(self.x + other.x, self.y + other.y)

 def __mul__(self, other):
 return self.x*other.x + self.y*other.y

�  In the definition of __add__, we call the initialization method to

construct a point object before returning it.

�  These methods are called as:
 p = point(10, 12)
 q = point(-1, 10)
 r = p + q
 print p * q

The __repr__() method

�  This returns the “official” string representation of an
object of the class.

�  Try deleting this method from the point class and
then try:

 p = point(10, 20)
 p

�  There is a related method called __str__() that
behaves similarly. We will not discuss this here.

A second example: the queue class

�  Our goal is to define a class called queue that can be used
to represent a collection of items.

�  We want to support two methods:
¡  join: which is for an item to join the queue
¡  leave: which is for an item that has been longest in the queue to

leave.

�  Here is how we want to use this class:
 >>> Q = queue()
 >>> Q.join(10)
 >>> Q.join(20)
 >>> Q.leave()
 >>> 10

