The point class
O

By ireating the point class, we are essentially adding a new data type called point to
Python.

We can then define objects belonging to the point class (i.e., we can define variables
of type point).

A typical class specifies
a collection of data and
a collection of methods (functions).

In the case of the point class, the data is simply an x-coordinate and the y-
coordinate.

The methods are what we might want to use to manipulate a point.

Thus a class can be viewed as a way of packaging a collection of data and providing
ways to modify the package.

Definition of the point class
class point():

This is the initializing method or constructor for the class.
Most classes will have one or more constructor methods.
Examples: p = point(5, 7) will call this method to construct
an instance p of the point class.
def __init___(self, a, b):

self.x=a

selfy=b

Most classes will have a special method (function) ___init___ called the initialization
method that will be called whenever we want to create a point object.

The function header is:
__init___(self, a, b):

This method is called as p = point(10, 12). The argument 10 corresponds to
parameter a, the argument 12 corresponds to parameter b.

There is no argument corresponding to self. self is a Python keyword that refers to
the object being created.

We use two pieces of data, a variable x and a variable y, in the point class.
In side the method, these two pieces of data are assigned values a and b respectively.

Initialization methods are also called constructors.

Here are function headers for some of the methods
in the point class.

def translateX(self, a):

def translateY(self, a):

def distance(self, p):

These are called using the “dot” syntax such as
p.translateX(10)

Here p corresponds to self in the parameter list and
10 corresponds to a.

Operator overloading refers to situations in which the same
operator has different meanings.

We have already seen operator overloading for “+” because this
refers to numeric addition as well as string concatenation

Python provides names for operators that we can use to overload
them: _add__, sub__, mul__, etc.

These names can be used instead of the actual operators. Try:
p=10
p.__add__(2)

1Look at Section 3.4.8 in Python 2 documentation for the complete
ist.

def __add__ (self, other):
return point(self.x + other.x, self.y + other.y)

def ___mul___(self, other):
return self.x*other.x + self.y*other.y

In the definition of __add___, we call the initialization method to
construct a point object before returning it.

These methods are called as:

This returns the “official” string representation of an
object of the class.

Try deleting this method from the point class and
then try:

p = point(10, 20)

P
There is a related method called __str__ () that
behaves similarly. We will not discuss this here.

» Our goal is to define a class called queue that can be used
to represent a collection of items.

» We want to support two methods:
join: which is for an item to join the queue
leave: which is for an item that has been longest in the queue to
leave.

» Here is how we want to use this class:
>»> Q = queue()
>>> Q.join(10)
>>> Q.join(20)
>> Q.leave()
>>> 10

