Quick Sort
O

def generalQuickSort(L, first, last):
Base case: if first == last, then there is only one element in the
slice that needs sorting. So there is nothing to do.

Recursive case: if there are 2 or more elements in the slice L[first:last+1]
if first < last:

Divide step: partition returns an index p such that

first <= p <= last and everthing in L[first:p] is <= L[p]

and everything in L[p+1:last+1] is >= L[p]

p = partition(L, first, last)

Conquer step
generalQuickSort(L, first, p-1)
generalQuickSort(L, p+1, last)

Combine step: there is nothing left to do!

def partition(L, first, last):
We pick the element L[first] as the "pivot" around which we partition the list
p = first

We process the rest of the elements, one-by-one, in left-to-right order
for current in range(p+1, last+1):

If L[current]is smaller than the pivot, it needs to move into the first block,
to the left of the pivot.
if L[current] < L[p]:

swap(L, current, p+1)

swap(L, p, p+1)

p=p+l

refurn p

def quickSort(L):
generalQuickSort(L, O, len(L)-1)

def swap(L, i, j):
temp = L[i]
L[i]=L[j]
L[j]= temp

» Imitial list: [6, 2, 4, 1, 6, 10, 2, 11, 8, 7]
» 6 1is selected as the pivot.

[161[]

[2] 61]

[2,4] 6]

[2,4,1]6[]

[2,4,1] 6 [6]

[2,4,1]6[6, 10]
[2,4,1,2] 6[10, 6]
[2,4,1,2] 6 [10, 6, 11]

[2, 4,1,2] 6 [10, 6, 11, 8]
[2,4,1,2]6][10,6, 11, 8, 7]

» Final list: [2, 4,1, 2, 6, 10, 6, 11, 8, 7]
» Function returns index 4

The partition may be skewed!

- Initial list: [16,2,4,1, 6, 10, 2,11, 8, 7]

[116 []

[2]16 []

[2,4]116 []
[2, 4,
(2,4
[2,4
[2, 4,
[2, 4,
[2, 4,
[2, 4,

» Final list: [2,4,1,6,10,2,11,8, 7, 16]
» Function returns index 9

The initial list is: [6, 2, 4, 11, 6, 10, 2]

[2, 4, 2] [6] [6, 10, 11] (partition on [6, 2, 4, 11, 6, 10, 2])
[1[2][4, 2] (partition on [2, 4, 2])

[2] [4] [] (partition on [4, 2])

[1[6] [10, 117 (partition on [6, 10, 11])

[1[10] [11] artition on [10, 11])

The sorted listis: [2, 2, 4, 6, 6, 10, 11]

Running Time Comparison

* On lists with 100,000 elements constructed at random.
Selection sort took 5 minutes on lists of this size.

Finished constructing the lists...
Time for Merge Sort is: 0.678801059723
Time for Quick Sort is: 0.980933904648

Finished constructing the lists...
Time for Merge Sort is: 0.682029008865
Time for Quick Sort is: 0.987423181534

Finished constructing the lists...
Time for Merge Sort is: 0.67242193222
Time for Quick Sort is: 0.985061883926

Puzzle: A different Experiment

O

» The input listis [0, 1, 2, ...] of size 10,000.

Finished constructing the lists...
Time for Merge Sort is: 0.0404422283173
Time for Quick Sort is: 4.38273501396

Finished constructing the lists...
Time for Merge Sort is: 0.0395169258118
Time for Quick Sort is: 4.36549711227

Finished constructing the lists...
Time for Merge Sort is: 0.0384669303894

Time for Quick Sort is: 4.36951899529

» Why does quick sort take 100 times more time??

For [0, 1, 2, 3, ..., n-1], n units of work yields
[]o]1,2,3,...,n-1]
An additional n-1 units of work yields
[11[2,3,...,n-1]
An additional n-2 units of work yields
1213, 4, ..., n-1]

So total work is n + (n-1) + (n-2) + ... + 1, which is
roughly n2/2.

n units of work yield

[.......] pivot [........] [] pivot [..........]
n units of work yield
[...] pivot [...] [...] pivot [...] [...] pivot [...] [...] pivot [...]

We go down log(n) levels, for a total of n log(n) units
of work.

Randomize! (Just pick a random element as the pivot,
instead of the first element).

Add this line of code at the beginning of partition:
swap(L, first, random.randint(first, last))

Now the running times, even on a sorted input list are
comparable:

Finished constructing the lists...
Time for Merge Sort is: 0.040990114212
Time for Quick Sort is: 0.0971350669861

