
M A R C H 8 T H , 2 0 1 3

Generating Lists

Generating lists

�  Python has a built-in function called range that allows us to generate lists
using arithmetic progressions.

�  It can have one, two, or three arguments, all of which must be integers.

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 >>> range(3, 11)
[3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
 []

The range function is useful in for-loops

 for i in range(1, 10, 2):
 print i*i

�  Repeats the execution of the body of the for-loop for
each value of i = 1, 3, 5, 7, and 9.

�  Equivalent to
 i = 1
 while i < 10:

 print i*i
 i = i + 2

�  But more convenient for simple loops because no need to
initialize before loop and no need to update within loop.

More examples of for-loops

L = ["hello", "hi", "bye"]
for e in L:
 print e + e

s = "What is this sentence?"
for ch in s:
 print ch

Generating Lists: Initialization

�  Here is another useful way of generating lists ,
particularly for initializing them, i.e., assign them
“initial” values at the start of a program.

Example:
 n = 25
 L = [8]*n

This assigns to L a list of length 25 consisting of the
integer 8.

Accessing slices of lists and strings

“hi” 10 “bye” 100 -20 123 176 3.45 1 “it”

L = [“hi”, 10, “bye”, 100, -20, 123, 176, 3.45, 1, “it”]

0 1 2 3 4 5 6 7 8 9

Examples:

•  L[2:5] is [“bye”, 100, -20]
•  L[:2] is [“hi”, 10]
•  L[4:4] is []
•  L[4] = -20
•  L[:len(L):2] = [“hi”, “bye”, -20, 176, 1]
•  L[2:5][1] = 100
•  L[1:5][:2] = [10, “bye”]

Slice Notation

�  The basic notation
L[start:end] # sublist with items indexed start through end – 1
L[start:] # sublist with items indexed start through end of list
L[:end] # sublist with items from the start of the list through index end-1
L[:] # a copy of the original list

�  The notation can also be used with a third parameter, step.
L[start:end:step] # sublist with items indexed start, not past end, in
increments of step

�  Step can also be negative, in which case the elements are listed in

reverse order

Problem

�  Read a positive integer n and roll two n-sided dice a
million times and output the distribution of the
sums.

�  In other words,
¡  the number of times 2 appears as the sum,
¡  the number of times 3 appears as the sum,
¡  the number of times 4 appears as the sum,
¡  …
¡  the number of times 2n appears as the sum.

rollDistribution.py

Programmer: Sriram Pemmaraju
Date: 2/29/2012

This program rolls a pair of n-sided dice a million times and reports the frequency of each outcome.
An outcome is the sum of the two numbers that appear on the top face of the two dice. Note that for
a pair of n-sided dice, the outcomes will be in the range 2..2n.

import random

n = int(raw_input("Please type the number of sides in your dice."))

L = [0]*(2*n+1) # Creates a list of length 2*n+1 with all elements of the
 # list initialized to 0

for i in range(1000000):

 # Roll the two n-sided dice and record the outcome
 outcome = random.randint(1, n) + random.randint(1, n)

 # L[outcome] stores the number of times outcome has appeared
 # So this element in the list needs to be incremented
 L[outcome] = L[outcome] + 1

#Report the contents of slots 2, 3, …
print L[2:]

