Lists as a Mutable Data Type
O

Consider the following “integer swap” function:

def swapInts(a, b):
temp = a
a=b
b = temp

Let us call this function as follows:

X=5
y = 10
swapInts(x, y)

What are values of variables x and y now?

The fact that x and y remain unchanged is not
unexpected.

Recall that when the function swapInts is called, the
parameter a is a local variable that takes of the value
of x (which is 5).

Similarly, the parameter b is a local variable that
takes on the value of y (which is 10).

The variables a and b are swapped in swapInts.

However, nothing happens to x and y since these
and and the variables a and b are distinct.

Consider the code for swap that was part of
selectionSort:
def swap(L, i, j):
temp = L[i]
L[i]=L[j]
L[j] = temp
What happens when we call it as follows?

s = "hello"
swap(s, 1, 2)

Both lists and strings allow the access of elements via
an index. In other words, we can look at L[i] or s[i].

However, we can assign to list elements via an index,
but not to string elements.

Example:
s = "hello”

s[2] = "p"
produces an error saying str object cannot support
assignment.

Say L =[1, 2, 3].
L[2] = 10 and L.append(17) are examples of in-place list
operations.

These operations modify the list L onto which they are
applied. They do not create a new list.

In this sense, L.append(17) and L + [17] are very
different from each other.

L + [17] does not modify L and it evaluates to [1, 2, 3,
17].

Strings do not support any in-place operations. You
cannot modify a string — you have to create a new string.

» Try these operations!
L.append(10)
L.extend([1, 2, 3])
L.insert(2, “"hello")
L.remove("hello")
L.sort()

L.reverse()

» None of these work on strings.

» Look at Section 5.6.4 on “Mutable Sequence Types”
in Python v.2.7.3 documentation.

The difference between objects of type list and
objects of other types is due to an important
difference in implementation.

Consider the assignment: L = [3, 4, 5]

We might think that after this assignment, L points
to the list [3, 4, B]. But no! L points to something
that in turn points to [3, 4, 5].

In programming language terminology, we say L
points to a reference to [3, 4, B].

Picture

O

Reference
(address)
(pointer)

L

(is a sticky note) 13, 4, 5]

Indirection

Consider the example:
>> L= [3,4,5]
>»> LL = L
>>> L.append(6)
>» LL [3,4,D, 6]
Notice how when modified L, the list LL also

changed. This is not true for any of the data types we
have seen so far.

After the assignment LL = L, LL points to a reference
that points to the same list as L.

>»>|L = [3, 4, 5]

>>> LCopy = L

>»>M =[3, 4, 5]

>> L == LCopy’ LCopy =M, M:==
(True, True, True)

>>>L[0]=9

>>> L == LCopy, LCop == M, M -==c
(True, False, False)

def test(L):

Llo] =7
return sum(L)

main program
J=1[3,4,5]

print test(J)
print J

When you run this and print J, you will see that J has become [7, 4, 5].
When J is sent in as argument to test, L is given a copy of J.

But, since J is pointing to a reference to a list, L ends up pointing to a copy of the
reference, but to the same physical list.

This provides another way of communicating between a main program and functions
(and between functions).

