
M A R C H 2 7 T H 2 0 1 3

String Operations

Python has lots of string operations…

�  You can find a bunch of these in Section 5.6.1.
“String Methods” of the Python documentation (v.
2.7.2).

�  These are in addition to the operations we studied

that are common to lists and strings.
¡  indexing, slicing
¡  membership testing (in and not in) and concatenation (+).
¡  index, count

String operations

�  Here is a categorization (of some of these methods)
that might help you navigate the long list of available
string operations:

¡  Boolean methods: isalpha, isalnum, isdigit, islower, isupper,
isspace , startswith.

¡  Reformatting methods: lower, upper, swapcase, capitalize,
center, strip, lstrip, rstrip, ljust, rjust.

¡  Split methods: split, lsplit, rsplit, splitlines.
¡  Join methods: join.
¡  Replace methods: replace

Examples: boolean methods

>>> "hello".isalpha()
True
>>> "hello".isalnum()
True
>>> "1234".isdigit()
True
>>> "39.78".isalnum()
False
>>> "hello?".islower()
True
>>> "Hello??".islower()
False
>>> "hello?".startswith("he")
True
>>> "hello?".startswith("He")
False

Examples: Reformatting methods

>>> "Hello, how are you?".lower()
'hello, how are you?'
>>> "Hello, how are you?".swapcase()
'hELLO, HOW ARE YOU?'
>>> "jack".capitalize()
'Jack'
>>> " this string has spaces.. ".strip()
'this string has spaces..'
>>> " this string has spaces.. ".lstrip()
'this string has spaces.. '
>>> " this string has spaces.. ".rstrip()
' this string has spaces..'
>>> "test".center(20)
' test ‘
>>> "hello??".rjust(20)
' hello??'

Split and Join

>>> "hello, how are you?".split()
['hello,', 'how', 'are', 'you?']
>>> "Other, characters, can, be, used,,to,split?".split(",")
['Other', ' characters', ' can', ' be', ' used', '', 'to',
'split?']
>>> '''This string
... spans a
... few lines'''.splitlines()
['This string', 'spans a ', 'few lines']
>>> " ".join(["hello", "are","you","ok?"])
'hello are you ok?'
>>> "??".join(["hello", "are","you","ok?"])
'hello??are??you??ok?'

Replace

>>> "hello how are you?".replace(" ", "!")
'hello!how!are!you?‘
>>> "hello, how are you?".replace("h","")
'ello, ow are you?'

Problem

Let us use our recently acquired knowledge about list
comprehensions and string methods to solve the
following problem.

Given a novel (e.g., “War and Peace”) find the principal

characters in the novel.

General Approach

�  Each character’s name appears in the text as a
proper noun and hence starting with an upper case
letter.

�  Words that start sentences always start with upper
case letters, so we should ignore these.

�  We can define a sentence as a sequence of characters
delimited by the punctuation marks “.”, “!”, and “?”.
(There might be more sophisticated ways of defining
sentences.)

General Approach (continued)

�  So we start by partitioning the text into sentences.

�  We then partition each sentence into words.

�  We then count those words that start with an upper
case letter and do not start a sentence.

�  We maintain frequencies (as in Homework 3) and
report the most words gathered in this manner.

Output

�  When run on “War and Peace” the output was:

[(1478, 'Pierre'), (1208, 'Prince'), (1124, 'Andrew'),
(886, 'Natasha'), (878, 'French'), (703, 'Moscow'),
(645, 'Mary'), (625, 'Emperor'), (591, 'Rostov'),
(495, 'Nicholas'), (488, 'Napoleon'), (453, 'Russian'),
(445, 'Princess'), (429, 'Kutuzov'), (343, 'Denisov'),
(330, 'Sonya'), (257, 'Dolokhov'), (243, 'Petersburg'),
(240, 'Count'), (238, 'Vasili')]

Parsing the text into sentences

Takes a string as parameter and "splits" it into "sentences."
We assume that ".", "!", and "?" are sentence delimiters
def parseSentences(bigString):
 # First split using ".". This creates a list of sentences, which need to
 # be further split using "!" and "?"
 sentenceList = bigString.split(".")

 # For each delimiter that is either "?" or "!", split according to
 # that delimiter
 for delimiter in ["?", "!"]:
 sentenceList = [x.split(delimiter) for x in sentenceList]

 # This creates a nested list, that needs to be flattened. We use a list
 # comprehension to flatten the list.
 sentenceList = [y for x in sentenceList for y in x]

 return sentenceList

Parsing a list of sentences into lists of words

Takes a list of sentences and parses each sentence in this list into a list of words.
So the result is a list of lists, e.g., [["This", "is", "ok"], ["This", "is", "not"]].
We use the same definition of a word as before. It is a contiguous sequence of letters.
def parseWords(sentenceList):
 # Make a list of all non-letters. Note the use of the list comprehension here
 nonLetters = [chr(x) for x in range(0, ord("A")) + range(ord("Z")+1, ord("a")) + range(ord("z")
+1, 127)]

 # Replaces each non-letter character in each sentence by a blank
 for i in range(len(sentenceList)):
 for char in nonLetters:
 sentenceList[i] = sentenceList[i].replace(char, " ")

 # Once non-letters have beeb replaced by blanks then a simple split() using
 # blank as the delimiter will help us get all the words. Note that this
 # constructs a nested list of words for each sentence.
 nestedWordList = [x.split() for x in sentenceList]
 return nestedWordList

The main program

main program
f = open("war.txt", "r")
bigString = f.read()
sentenceList = parseSentences(bigString)
nestedWordList = parseWords(sentenceList)

This block of code walks through the list of words, ignores
the first word in each sentence and of the remaining words, picks
ones that start with an upper case and have length at least 4.
characterNames = []
for sentenceWords in nestedWordList:
 restOfWords = sentenceWords[1:]
 for w in restOfWords:
 if w[0].isupper() and len(w) > 3:
 characterNames.append(w)

[masterList, frequencies] = computeFrequencies(characterNames)

zips the frequencies and words together and sorts the zipped list in descending
order of frequencies.
combinedList = zip(frequencies, masterList)
combinedList.sort(reverse = True)

Prints the 20 most frequent character names
print combinedList[:20]
f.close()

