List Comprehensions

O

[x**2 for x in range(10)]
[0,1,4,09,16, 25, 36, 49, 64, 81]

[str(x)+str(x) for x in range(10)]
[IOOI' l11l' l22l' l33l, l44l' l55l, '66" l77l, '88" l99l]

[str(x)+str(x) for x in range(10) if x%2 == QO]
['00', '22', '44', '66', '88']

They provide a flexible, fast, and compact way of creating
new lists from old lists.

Anything you can do using map and filter, you can do
using the list comprehension. More on this later.

List comprehensions provide a more compact
alternative to explicitly using for-loops.

See Section 5.1.4 (on List Comprehensions) from Python
v2.7.3 documentation.

[expr for x in list]

Notes:
for and in are Python keywords, used just as in for-loops.

x is a variable that takes on values of elements in list, in order.
expr is Python expression, typically involving the variable x.

The expression [expr for x in list] evaluates to a list made up of the
different values that expr takes on for different x.

This is similar to the “set builder” notation used in math:
{x*y | x and y are even}.

[expr for x in list if bool-expr]

Notes:
bool-expr is a boolean expression involving x.

The overall expression evaluates to a list of values of
expr evaluated for all values of x in list satisfying the
bool-expr.

Example: [str(x)+str(x) for x in range(10) if x%2 == 0]
evaluates to ['00', '22', '44', '66', '88']

Generating lists of lists.

[range(x) for x in range(1, 5)]
Evaluates to: [[0], [O, 1], [O, 1, 2], [O, 1, 2, 311

¢ 0

All numbers in the range 0..49 containing the digit “7”.

[x for x in range(50) if "7" in str(x)]
Evaluates to: [7, 17, 27, 37, 47]

map(f, list) can be written as the list comprehension
[f(x) for x in list].

filter(P, list) can be written as the list
comprehension [x for x in list if P(x)].

map requires a function f, filter requires a (boolean)
function P. List comprehensions can often manage

with expressions.

Example:

[x*y for x in range(3) for y in range(3)]
[0,0,0,0,1,2,0,2, 4]

Notes:

As in nested loops, for every iteration of the first loop
(the for-x loop), all iterations of the second loop (the
for-y loop) are executed.

[X for x in range(100) for y in range(x) if y*y == x]
[4,9, 16, 25, 36, 49, 64, 81]

Notes:

Those x and y values (from their respective lists) that
satisfy the condition y? = x, are generated.

Thus all x values generated in this manner are
perfect squares.

composites = [x for y in range(2, 10) for x in range(2*y, 100, y)]

Notes:

For eachy = 2, 3,..., 9, the variable x takes on values that
are multiples of y.

For y = 2, the variable x takes on values 4, 6, 8,..., 98.
For y = 3, the variable x takes on values 6, 9, 12,..., 99.

Thus the values of x generated in this manner are (strict)
multiples of 2, 3, 4,..., 9.

This covers all composites in the range 2..99.

primes = [x for x in range(2, 100) if x not in composites]

Notes:

Primes in the range 2..99 can be obtained by taking the
complement of the generated composites.

>>> nestedList = [range(x) for x in range(1, 4)]
>>> nestedList

>»> [[0], [O, 1], [O, 1, 2]1]

>>> [y for x in nestedList fory in x]
>»>>[0,0,1,0,1, 2]

>»> mat = [[3, O, 1],
[2,1,7],
[1, 3, 9]]

>>> [[mat[i][j] for i in range(len(mat))] for j in range(len(mat))]
»>[[3,2,1],[0,1, 3],[1,7,9]1]

Notes:

The expression, which is the first element of the list
comprehension, itself happens to be a list comprehension.

Therefore, each element of the constructed list, is a list
itself.

The danger with list comprehensions is that your
code may become hard to understand, especially
with nested list comprehensions.

If by using a list comprehension, you are making
your code hard to understand, then it is time to
desist.

