
F E B 1 2 0 1 3

Programming Problem 2:
Primality testing

Our second programming problem

Primality Testing
 Given a positive integer (> 1), determine whether it is

a prime number or not.

Examples:

 Input Output
 31 prime
 2001 composite
 987654321 composite

Why do we care?

�  Our digital life depends on the security of
information that we send over the internet.

�  Security of information is made possible by
encryption methods.

�  One of the most well known encryption methods is
the RSA algorithm (R = Ron Rivest, S = Adi Shamir,
and A = Leonard Adleman).

�  The first step of this algorithm is to find two large
primes p and q and compute their product n = p*q.

�  “Large” here could mean 300 digits or so.

Algorithmic Idea

�  Generate all “candidate” factors of n, namely
 2, 3, …, n-1

�  For each generated “candidate” factor, check if n is
evenly divisible by the factor (i.e., the remainder is
0).

�  If a “candidate” factor is found to be a real factor,
then n is composite.

�  If no “candidate” factor is found to be a real factor,
then n is a prime.

Algorithm in pseudocode

1.  Input n
2.  For each factor = 2, 3, …, n-1 do the following
3.  if n is evenly divisible by factor then
4.  remember that n is a composite
5.  If we have detected that n is a composite
6.  output that n is a composite
7.  Otherwise output that n is a prime

Python code (Version 1)

number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
while(factor <= number - 1):
 if(number % factor == 0):
 isPrime = False

 factor = factor + 1

if(isPrime):
 print number, "is prime“

else:
 print number, “is composite”

