Programming Problem 2:
Primality testing

O




Primality Testing

Given a positive integer (> 1), determine whether it is
a prime number or not.

Examples:
Input Output
31 prime
2001 composite

087654321 composite



Our digital life depends on the security of
information that we send over the internet.

Security of information is made possible by
encryption methods.

One of the most well known encryption methods is
the RSA algorithm (R = Ron Rivest, S = Adi Shamir,

and A = Leonard Adleman).

The first step of this algorithm is to find two large
primes p and q and compute their product n = p*q.

“Large” here could mean 300 digits or so.



Generate all “candidate” factors of n, namely

2,9, ..., N-1

For each generated “candidate” factor, check if n is
evenly divisible by the factor (i.e., the remainder is
0).

If a “candidate” factor is found to be a real factor,
then n is composite.

If no “candidate” factor is found to be a real factor,
then n is a prime.



Input n
For each factor = 2, 3, ..., n-1 do the following
if n is evenly divisible by factor then
remember that n is a composite
If we have detected that n is a composite
output that n is a composite
Otherwise output that n is a prime



number = int(raw_input("Enter a positive integer: "))

factor = 2
iISPrime = True
while(factor <= number - 1):
if(humber % factor == 0):
iIsPrime = False
factor = factor + 1

if(isPrime):

print number, "is prime"
else:

print number, “is composite”



