22C:16 (CS:1210) Homework 2
Due via ICON on Friday, Feb 22nd, 4:59 pm

What to submit: Your submission for this homework will consist of three files. One of them will
be a pdf file called homework2.pdf. This will contain partial answers to Problems 1 and 2. For
Problem 1, the pdf file should contain a classification of the given numbers as prime/composite
and for Problem 2, the pdf file should contain the output produced by your program and the
answers to the questions posed. This pdf file should start with your name, section number, and
student ID. The remaining files should be called FLTPTest1.py, FLTPTest2.py. These should
contain Python programs for Problems 1 and 2 respectively. These files should also start with
your name, section number, and student ID appearing at the top of the file as Python comments.
You will get no credit for this homework if your files are named differently, have a different format
(e.g., docx), and if your files are missing your information.

Fast Primality testing. Hopefully, you have all been scratching your heads about how it is
possible to test integers with 100s of digits for primality in any reasonable amount of time. You
might recall the discussion we had in class on how the program we wrote for primality testing
would take about 103% years (which is much more than the lifetime of the Universe!) even on
fast computers, for input with 300 digits. This homework will introduce you to a method for
designing extremely fast primality testing algorithms.

One of the oldest fast primality testing algorithm, called the Miller-Rabin Algorithm dates
back to the late 70s. If implemented correctly, the Miller-Rabin Algorithm can easily test
integers with 100s of digits, for primality. The Miller-Rabin Algorithm belongs to a class of
algorithms called randomized algorithms. What makes an algorithm randomized is that one or
more of the algorithm’s steps are performed by rolling a die (or flipping a coin). In other words,
the algorithm rolls a die and uses the outcome of the die roll to determine what to do next.
Of course, algorithms don’t have access to “real” dice and randomized algorithms call random
number generators to simulate the roll of a die. The Miller-Rabin algorithm is extremely fast,
not just because it is randomized, but also because it is allowed to produce an incorrect answer!
If the input is a prime, the Miller-Rabin algorithm will correctly figure this out; however, if the
input is a composite, then the algorithm may, with a very tiny probability, make an error and
report the number as a prime.

In this homework, you are asked to implement a randomized primality testing algorithm
that is simpler than the Miller-Rabin Algorithm and is called the Fermat’s Little Theorem
Primality Test (FLTP Test). The well-known encryption program PGP uses the FLTP Test
in its algorithms. As the name suggests, the FLTP Test depends on Fermat’s Little Theorem.
This is an old mathematical result, first stated by Pierre de Fermat in 1640 and it says this:

If p is a prime then for all integers a, 1 < a < p, a?~! mod p equals 1.

In other words, if p is a prime then you can pick any integer a between 1 and p — 1 (inclusive of
1 and p — 1) and compute a?~ !, divide this by p and the remainder will be 1.

Example. Suppose p = 7. Then Fermat’s Little Theorem is saying that for a = 1,2,...,6,
a% mod 7 equals 1. This is easy to check.

=1 lmod7=1
26 =64 64 mod 7 =1
36 =729 729 mod 7 =1
45 = 4096 | 4096 mod 7 =1
56 = 15625 | 15625 mod 7 =1
6% = 46656 | 46656 mod 7 = 1

Fermat’s Little Theorem suggests the following simple algorithm for primality testing:

Given an integer n > 1, compute a"~! mod n for each a = 1,2,...n — 1. If for any
of the a’s that were considered, a”~! mod n # 1 then output composite; otherwise
output prime.

While this algorithm is correct, it is not any faster than the naive primality testing algorithms we
have already implemented. Notice that the above algorithm simply runs through all a’s between
1and n—1.

To speed up up this algorithm we use a different mathematical fact. Before we can state this
fact, we need to define two pieces of terminology.

(i) For a composite n, we call an integer a, 1 < a < n, a Fermat witness if a®~! mod n # 1.
Thus a Fermat witness is a “witness” to the compositeness of n.

(ii) A positive integer n is a Carmichael number if a®~! mod n = 1 for all a’s in the range
[1,n — 1] that are relatively prime to n. Recall that two numbers are relatively prime if
they have no common factors other than 1. For example, 4 and 9 are relatively prime.

Example. The smallest Carmichael number is 561. 561 is a composite because 3x11x17 =
561. 561 is a Carmichael number because for every a in the range [1,560] that is relatively
prime to 561, %% mod 561 = 1. So what are some values of a that are relatively prime to
5617 1, 2,4, 5, and 7 are the first 5 integers in the range [1, 560] that are relatively prime
to 561. For each value of a = 1,2,4,5,7, it is the case that a®®° mod 561 = 1. For values
of a not relatively prime to 561, a®%° mod 561 may or may not be equal to 1.

Now the mathematical fact that helps us speed up primality testing is this:

Every composite integer n is either a Carmichael number or at least 1/2 of the integers
in [1,n — 1] are Fermat witnesses.

Thus the above fact is telling us that with the exception of Carmichael numbers, every composite
n has lots of Fermat witnesses — at least 50% of the numbers in the range [1,n — 1] are Fermat
witnesses.

Example. Let n = 6. The following table shows values of a® mod 6 for a = 1,2, 3,4, 5.

1°=1 lmod 6=1
25 =32 32 mod 6 =2
35=243 | 243 mod 6 =3
45 =1024 | 1024 mod 6 =4
55 =3125 | 3125 mod 6 =5

From the table it is clear that 6 has 4 Fermat witnesses - thus more than 50% of the 5 possible
values of a are Fermat witnesses.

This means that if the input is a non-Carmichael composite n, then we can pick an integer
a at random from the range [1,n — 1] and expect that a will be a Fermat witness for the
compositeness of n with probability at least 1/2. Thus we would have an at least 50% chance
of correctly identifying n as a composite, just by performing one test. To improve the chances
of getting the test right, we could just repeat the random choice of a a few times. Suppose we
repeat the above process 10 times, independently picking a at random (from the range [1,n — 1])
each time, then the probability of not finding a Fermat witness all 10 times would be under
1/2'0 = 1/1024. Thus the probability of incorrectly declaring that a non-Carmichael composite
is a prime is less than 1/1000, even if we repeat the test only 10 times. This leads to the following
simple randomized algorithm for primality testing:

Input: a positive integer n
Algorithm: FLTP TEsT
repeat 10 times
pick an integer a at random from [1,n — 1]
if a®~! mod n # 1, output composite and exit the program.
output prime

This leaves just the vexing issue of Carmichael numbers. These may have only few Fermat
witnesses and so the above algorithm may declare them as primes (even though they are com-
posite) with a fairly high probability. For example, 561 has 240 Fermat witnesses, somewhat
less than half of 560. In fact, this is the main reason that the Miller-Rabin Algorithm and not
the FLTP test is used for primality testing in general. However, Carmichael numbers are not
that common. The smallest Carmichael number is 561 and these numbers get rarer as we start
considering larger numbers.

1. Implement the FLTP TEST. Your program should prompt the user for a positive integer,
larger than 1 and then output a message indicating the primality of the input. Notice
that FLTP TEST involves computing a”~' mod n, where n could be quite large. What
Python provides via the pow and the math.pow functions or the ** operator are just not
fast enough for our purposes So I have written a function called fastPowerMod(a, d, n)
that computes a? mod n efficiently and is quite suitable even when n has 100s of digits. A
link to this function is posted on the course page.

Use your implementation to test the primality of the following numbers:

e 5991810554633396517767024967580894321153

e 19822271254366240129112696248055903545291688310293

e 27175146095341224357465037532218133092930145221379

o 470287785858076441566723507866751092927015824834881906763507

e (693711969678975263512873427191894879124339838606362751311911118403883

2. As you know from the above discussion, the FLTP TEST can incorrectly classify compos-
ites as primes. Write a program that runs the FLTP TEST on all integers in the range
[500,100000] and reports all integers in this range that are incorrectly classified as primes.

To complete this task, your program would have to be able to correctly identify primes/-
composites and the easiest way to do this is to simply use the naive primality testing
algorithm we have already implemented. Recall that this algorithm always returns the
correct answer, just that it is terribly slow. So take Version 3 of our primality test-
ing program (primalityTesting3.py) and use this to create a boolean function called
exactPrimalityTest(n) that returns True if n is prime and False otherwise. Once the
function exactPrimalityTest has been implemented, you can solve this problem by sim-
ply running through each number n = 500, 501, ...,100000, first using FLTP TEST on n
and then calling exactPrimalityTest on n.

Examine the output of your program and compare the output with the list of Carmichael
numbers less than 100000 (there are not that many Carmichael numbers under 10,000).
Are you seeing any non-Carmichael composites classified as primes? In general, what would
be a simple way of improving the accuracy of the program with respect to non-Carmichael
composites?

Extra Credit: 10 points. The 2013 University of Iowa Computing Conference is being held
on Friday, Feb 22nd (starting at 6 pm) and on Feb 23rd (see http://acm.uiowa.edu/uicc/ for
details). Since you will be busy with Exam 1, you will have to skip the Feb 22nd talk. However,
there are 4 talks on Saturday. Go to the UICC website for details on times and locations.

To get extra credit, attend any one talk and write a 1 paragraph (5-7 sentences) summary of
the talk. These summaries are due in your discussion section on Tuesday, 2/26.

