
22C:16 CS:1210 Exam 2
April 5th, 6:30 pm to 8:30 pm

Instructions:

• This is an open notes exam and you have 2 hours to complete it. There are 4 problems in
the exam and these appear on 8 pages.

• Make sure that you do not have any electronic devices (laptops, phones, calculators, dic-
tionaries, etc.) on your desk; you are not allowed to access these during your exam.

• Write as neatly as you can.

• Show all your work, especially if you want to receive partial credit.

Name:

Circle your discussion section:

SCA (M, W evening) A01 (9:30-10:20) A02 (11-11:50) A03 (12:30-1:20)

A04 (2:00-2:50) A06 (3:30-4:20)

1. Evaluate each expression and write down its value. Assume that (i) concat is a function
that takes two arguments a and b and returns b+a, (ii) isLong is a function that takes an
argument x and returns len(x) > 3, and (iii) L = [["This", ["is", "a"]], "nested",

["list", "with"], ["several", [["different"]]], ["levels", "of"], "nesting"].

(a) L[:5:2][-1]

(b) [x for y in L for x in y][:5]

(c) filter(isLong, L)

1



For your convinience, here is the list L from the previous page: L = [["This",

["is", "a"]], "nested", ["list", "with"], ["several", [["different"]]],

["levels", "of"], "nesting"]

(d) reduce(concat, map(len, L))

(e) [x.split("e") for x in L if len(x) > 3]

(f) L.count("nest")

(g) reduce(concat, filter(isLong, L))

(h) [i for i in range(len(L)) if "nest" in L[i]]

(i) L[3][1][0][0][1:3]

(j) [x[0] for x in L if type(x) == list]

2



2. This problem has two parts. For each part, you are given some code and asked to figure
out what output it produces.

(a) Consider the following function:

def areConnected(w1, w2):

words = [w1[:i+1] + w1[j:i:-1] + w1[j+1:]

for i in range(len(w1))

for j in range(i+1, len(w1))

]

print words

return w2 in words

(i) What output do we get when we call this function as:
areConnected("help", "hlep")

Note that you are not being asked what the function returns; you are being asked
about what gets printed.

(ii) What do the following function calls return?

∗ areConnected("writers", "rwiters")

∗ areConnected("writers", "wrtiers")

∗ areConnected("writers", "writes")

∗ areConnected("writers", "sriterw")

3



(b) Here is the code for binary search. Notice the print-statement that we have added
inside the while-loop and the print statement at the bottom of the function.

def binarySearch(L, k):

left = 0

right = len(L)-1

while left <= right:

mid = (left + right)/2 # index of the middle element

print left, mid, right

if L[mid] == k:

return mid # element is found at mid, so return this index

elif L[mid] < k: # look for element in right half

left = mid + 1

elif L[mid] > k: # look for element in the left half

right = mid -1

print left, right

return -1 # element is not found in the list

(i) What output does the following function call produce:

binarySearch([3, 5, 7, 8, 10, 20, 30, 100, 1000, 1001], 79)

(ii) What output does the following function call produce:

binarySearch([3, 5, 7, 8, 10, 20, 30, 100, 25, 30, 1000, 1001], 8)

(iii) What output does the following function call produce:

binarySearch([3, 5, 7, 8, 10, 20, 30, 100, 15, 30, 1000, 1001], 15)

4



3. In this problem, you are given two partially completed programs. Your task is to complete
each program.

(a) Here is a partially completed program that reads a text file that looks like:

Theodore Roosevelt 1858-1919

Woodrow Wilson 1856-1924

Herbert Hoover 1874-1964

Richard Nixon 1913-1994

Thus each line in the text file contains the name of a U.S. president followed by that
president’s life span. You may assume that each president’s name consists of a first
name and a last name separated by one or more blanks. The president’s name is
followed by one or more blanks and then the life span of the president is given in the
format shown above. Your task is to write a program that reads a file such as this
and outputs the list of presidents in decreasing order of how long they have lived. For
the above shown input file, your program should produce the following output:

Herbert Hoover

Richard Nixon

Woodrow Wilson

Theodore Roosevelt

Here is the partially complete program. It contains 4 blanks that you need to fill –
three in the while-loop and one in the print-statement.

f = open("presidents.txt", "r")

line = f.readline().rstrip()

presidentList = []

while line:

[firstName, lastName, lifeSpan] = ___________

[birthYear, deathYear] = ____________

presidentList.append(_________________________________________)

line = f.readline()

presidentList.sort(reverse = True)

for president in presidentList:

print ___________________

f.close()

5



(b) In this problem we provide a partially complete program that reads a 2-dimensional
n× n symmetric matrix from a text file and stores this as a “nested” list (i.e., a list
of lists). For example, the input file might look like the following:

3 4 1 7

3 2 1

2 4

1

This input file describes a 4×4 matrix. You would expect the input file to contain 16
numbers (4 per line), but it contains fewer numbers because the matrix is symmetric.
Recall that in a symmetric matrix, the element in row i, column j is the same as the
element in row j, column i. In the above example, the first line specifies the first
row of the matrix. The second line, “3 2 1” specifies the elements in the second row
of the matrix that occur in column 2, column 3, and column 4 respectively. There
is no need to provide the element in row 2, column 1 because it is the same as the
element in row 1, column 2, which we know to be 4. Similarly, the third line “2
4” specifies the elements in the third row of the matrix that occur in column 3 and
column 4 respectively. Elements that occur in the third row in columns 1 and 2 need
not be explicitly specified because they can be inferred by symmetry. Thus the matrix
specified by the input file is: 

3 4 1 7
4 3 2 1
1 2 2 4
7 1 4 1


In the following program (shown in the next page), the matrix is constructed in two
stages. In the first stage, the input file is read and zeroes are used for the missing
numbers. For the input file shown above, the constructed matrix, after the first stage
would be:

[[3, 4, 1, 7], [0, 3, 2, 1], [0, 0, 2, 4], [0, 0, 0, 1]]

In the second stage, the zeroes that appear in the beginning of each row are replaced
by valid elements. The constructed matrix after the second stage would be:

[[3, 4, 1, 7], [4, 3, 2, 1], [1, 2, 2, 4], [7, 1, 4, 1]]

In the partially completed program, the first for-loop comprises the first stage de-
scribed above and the “print mat” statement after this for-loop produces output:

[[3, 4, 1, 7], [0, 3, 2, 1], [0, 0, 2, 4], [0, 0, 0, 1]]

The second stage is implemented by the nested for-loops and the “print mat” state-
ment at the bottom of the program produces output:

[[3, 4, 1, 7], [4, 3, 2, 1], [1, 2, 2, 4], [7, 1, 4, 1]]

Fill in the four blanks in this program.

6



f = open("matrix.txt", "r")

mat = []

zeroes = 0

for line in f:

mat.append(___________________________________)

zeroes = zeroes + 1

print mat

for i in _________________________:

for j in _________________________:

________________________

print mat

f.close()

7



4. A sequence of numbers
x1, x2, . . . , xn

is called bitonic if there is an integer j, 1 ≤ j ≤ n, such that x1 < x2 < · · · < xj and
xj > xj+1 > · · · > xn. In other words, a bitonic sequence consists of a bunch of numbers
at the beginning that are in strictly ascending order followed by a bunch of numbers in
strictly descending order. For example, 1, 3, 7, 9, 15, 10, 2 is a bitonic sequence. Also, 3,
7, 8, 10, 20, 21 is a bitonic sequence.

Write a function called findBitonicMax that takes a list L of numbers that forms a bitonic
sequence and returns an index of the maximum number in L. Of course, it is possible to
find the maximum number by simply doing a left-to-right scan of the elements in L. A
much more efficient way would be to solve this problem by using a “binary search” like
algorithm and this is what you are required to implement. Specifically, you could examine
the element in the middle of L along with its two neighbors on either side and based on what
you see, you can determine if (i) the maximum is the middle element, (ii) the maximum
is on the left side of the middle element, and (iii) the maximum is on the right side of the
middle element.

Implement this “binary search” like algorithm using the following function header:
def findBitonicMax(L):

8


