hot pol. py Tue Feb 19 18:36:13 2013 1

This is the original HOTPO function from HWM, converted
into a function.

#

#

Notice the function definition conmes first. Wen Python
reads the definition, it doesn’'t execute anything.
#
#
d

The input to the function is a single value, which we nmap
onto the variable n; this variable is local to the function
ef hot poLengt h(n):
count = 0
whi l e n>1:
i f no@:
n=3n+1
el se:
n=n/2
count = count + 1
Note we don’t print anything out, but instead return
a value. This is the value that the invocation of the
function will yield when eval uated.
return count

Here's the invocation of the function. Since we evaluate from
"inside out," the integer equivalent of the user input is "passed"
to the hoptoLength(n) function as the value of the Iocal function
variabl e n. The hoptolLength() function returns a value, which is
then printed.

print hotpoLength(int(raw input("Enter a number: ")))

HHHFH

hot po2. py Tue Feb 19 18:45:40 2013 1

This is the sane function defined previously, with a slight twist to
reduce the nunmber of iterations. Can you spot it?
def hot poLengt h(n):
count = O
while n>1:
if no@:
n=(3*n+ 1)/2
count = count + 2
el se:
n=mn/2
count = count + 1
return count

Here is a new function definition. hotpoLengthMax() returns the
| ongest hotpoLength() of any nunber between 1 and n-1. It does this
by repeated invocation of the hotpolLength() function above. Note
that the variable n in the hotpolLengthMax() function signature is
not the same variable n as the one in the hotpoLength() signature.
def hot poLengt hMax(n):
i =1
W' || use the nmaxlen variable to keep track of the | ongest
hot poLength() encountered so far. Note that maxlen only exisits
within the hotpolLengthMax() function; it is not defined outside of
the function.
maxlen = 0
while i < n:
Here's the invocation of hotpoLength(). On invocation, i is
evaluated and its value is bound to the n variable in the
hot poLengt h() function definition signature. \Wen hot poLength()
compl etes, the value it returns is conpared agai nst maxl en
i f hot poLengt h(i)>maxl en:
maxl en = i
i =i +1
The value returned by the function is the | ongest hotpoLength()
encount ered.
return maxl en

Here's the invocation of hotpolLengthMax(). The integer equival ent of
the user’s input is mapped to the variable n in the hotpoLengt hMax()
function signature. The val ue returned by hot poLengt hMax() is

printed.

print hot poLengt hMax(int(raw_i nput("Enter a nunber: ")))

hot po3. py Tue Feb 19 18:43:45 2013 1

This is the same function defined previously.
def hot poLengt h(n):
count = 0
whi |l e n>1:
i f no@:
n=(3*n+ 1)/2
count = count + 2
el se:
n =n/2
count = count + 1
return count

A slight twi st on the hotpolLengt hMax() function of the previous
exanple. Here, instead of returning the | ongest hotpoLength()
encountered between 1 and n-1, we return the index of the |ongest
hot poLength() encountered between |o and hi-1, provided it exceeds
maxsofar. We are basically breaking the hotpolLengthMax() range into
chunks.
def hot poLengt hMaxl nRange(l o, hi, maxsofar):
i =1o
while i < hi:

i f hot poLength(i)>maxsof ar:
A return here is like a super break; it exits not only
the while | oop but the entire function

return i
i =i +1
No val ues > maxsof ar.
return hi

Note how the two raw input () statenments are evaluated in order |eft
to right when you execute.
print hot poLengt hMaxl nRange(int(raw_ i nput("Enter lo: ")), int(raw_input("Enter hi: ")), 0)

hot po4. py Tue Feb 19 19:00:52 2013 1

Further devel opnment of the previous version. Qur goal is to produce
the nunbers listed on http://oeis.org/ A006877 -- corresponding to

the set of integers with the |onger hoptoLength than all of their

smal l er integers.

Unchanged from previ ous exanpl es.
def hot poLengt h(n):

count = 0
whil e n>1:
i f no@:

n=(3*n + 1)/2
count = count + 2
el se:
n =n/2
count = count + 1
return count

This is pretty much the sanme function defined previously, except
that nowit is returning two values: the new nax hoptolLenght() as
well as the integer index that produces it. Notice how every return
statenment returns two val ues, and notice how, when the function is
invoked below, there are two variable set to "receive" the returned
val ues.
def hot poLengt hMaxl nRange(l o, hi, nmaxsofar):

i =1o

while i < hi:

h=hot poLengt h(i)
if h > maxsofar:
return (i, h)
=i +1
return (hi, maxsofar)

n =int(raw_input("Enter an upper limt: "))
i =1
j =n
Initial max hot poLength() artificially set to -1 so that we "notice"
hot poLength(1l) is 0, a new nax.
mx = -
while i < n:
Repeatedly invoke the new range.
(j , max) = hotpoLengt hivaxl nRange(i, j, max)
If j==n, we’ve exhausted the originally specified range from1

to n-1, and no new wi nner was found in the invocation of
hot poLengt hivax| nRange() .
ifj ==n
br eak
OK, nust have found a new "w nner;'
print j
Update the |ower end of the range to start the next invocation
of hot poLengt hMaxl nRange() just beyond the |ast w nner.
i =j +1
Reset the upper end of the range to the original limt.
J] =n

print it out.

