
M A Y 2 N D 2 0 1 2

Overloading Operators and
Inheritance

Overloaded operators

�  An operator (e.g., +) is overloaded if it has different
meanings depending on the context in which it appears.

�  Example: 8 + 2 = 10, “8” + “2” = “82”, [8] + [2] = [8,
2].

�  When we define new classes, we might want to overload
operators so as to give familiar operators new meaning in
the presence of instances of the defined class.

�  Example: Suppose p = point(3, 2) and q = point(1, 4).
We might want to interpret p + q as “pointwise” addition
and require p + q to evaluate to a point (4, 6).

Python allows users to overload operators

�  Section 3.4.8 in the Python reference manual lists a
bunch of built-in methods. Some of these are:
¡  object.__add__(self, other)
¡  object.__sub__(self, other)
¡  object.__mul__(self, other)
¡  object.__mod__(self, other)

�  These correspond to the familiar binary, numeric
operators +, -, *, and %.

�  When we use one of these operators, it has the effect of
calling (behind the scenes) one of the above methods.

�  By redefining these methods within a user-defined class,
we can overload standard Python operators.

point class revisited

�  We can add the following methods to the point class:

 def __add__(self, p):
 return pointWithOperators(self.x + p.x, self.y + p.y)

 def __mul__(self, p):
 return self.x * p.x + self.y * p.y

�  The class can now be used as follows:

>>> p = pointWithOperators(1, 4)
>>> q = pointWithOperators(2, 4)
>>> p
(1, 4)
>>> q
(2, 4)
>>> p + q
(3, 8)
>>> p * q
18

Operator Overloading: Final Remarks

�  Python documentation tells us that there are built-in
Python methods corresponding to all kinds of
operators including
¡  comparison operators (e.g., <, >, etc.),
¡  indexing operator (e.g., L[4]),
¡  slicing operator (e.g., L[3:5]), etc.

�  These make the language extremely flexible and
powerful.

Inheritance

�  Another powerful mechanism that is usually
associated with classes is the notion of inheritance.

