
M A R C H 5 T H , 2 0 1 2

Functional Programming in
Python

Problem

Write a program that counts the number of numbers
in the range 0 through 1000 that contain the digit 7.

 The program in its entirety:

def containsSeven(s):

 return "7" in s

print len(filter(containsSeven, map(str, range(0, 1001))))

Functional Programming

 Functional programming is a programming paradigm that
treats computation as the evaluation of mathematical
functions.

 Programming languages that do not use this style are called
imperative programming languages (C, C++, Java, etc).

 For our purposes in this course, functional programming
amounts to passing functions as arguments to other
functions.

 We will learn about built-in Python functions map, filter,
and reduce that are extremely powerful because they take
other functions as arguments.

Functional Programming

 In general, it is easier to reason formally about
programs written in functional programming style.

 General purpose functional programming
languages: Lisp, Scheme, Haskell, OCaml, etc.

 Specialized functional programming
languages: Mathematica (mathematical computation),
R (statistical computation), etc.

 Python has elements of both imperative style and
functional style.

The map function

 map(f, [a, b, c, d, e]) returns the list [f(a), f(b),
f(c), f(d), f(e)]

 The first argument of map is a function f and the
second argument is a list L; it returns a new list
obtained by applying f onto every element of L.

Examples:
 map(round, [4.57, -9.876, math.pi]) returns [5.0, -10.0, 3.0]
 map(str, range(0, 6)) returns [‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’]

 The map function allows us to construct new lists from old
ones.

The map function

 Note that one can equivalently use the for-loop or
the while-loop. Using the map function is faster.

 The map function can also take functions with more
than one argument.

Example:

 def pow(x, y):

 return x + y

>>> map(pow, [3, 4, 5], [5, 6, 7])

[8, 10, 12]

The filter function

 filter(f, L) returns a sublist of L consisting of those
elements in L (in the same order as they appear in L)
for which the boolean function f evaluates to True.

 Examples:
 filter(bool, [0, -10, 0.0, None, “hello”]) returns [-10, 'hello']

 filter(containsSeven, map(str, range(1001))) returns a list

containing all of the numbers in the range 0 through 1000 that
contain 7.

The reduce function

 This function is used as:

reduce(f, L)

 Here f is a two-argument function and L is a list.

 At each step, reduce passes the current answer along

with the next item from the list, to f. By default, the
first item in the sequence initialized the starting
value.

Example: reduce(multiply, range(1, n+1)) is a
compact and efficient way of computing n!.

