
J A N 2 3 R D 2 0 1 2

Understanding our first
program

Understanding the input statement

n = int(raw_input("Enter a positive integer:"))

 Assignment statement
�  = is the assignment operator

�  n is a variable

�  The stuff on the right hand side is an expression that
gets evaluated and its value gets assigned to the
variable n

Examples of assignment statements

�  n = 9

�  n = n/2
(Assignment operator is not algebraic equality)
�  n = n + 1
(A commonly used assignment statement)
�  n = math.sqrt(100)
(Can be used after importing the math module)
�  n = raw_input(“Enter a number:”)

The raw_input function

 raw_input(prompt)
�  This function is a built-in Python function and is

always available.

�  The prompt is written to output and then the
function reads a line from input.

raw_input evaluates to a string

Try this code snippet. What happens?

 x = raw_input(“Enter a number:”)
 x = x + 1

 What the user types is read in as a string, the

expression on the right hand side evaluates to a
string and x gets assigned a string.

Data types in Python

�  Every object (e.g., constants, variables) in Python has
a type

�  An object’s type determines what operations can be
performed on that object.

�  Use the Python built-in function type to determine
an object’s data type.

Data types in Python

�  Examples:

�  Python has many built-in data types. For now we will

work with three types:

 integer int
 string str
 floating point float

Constant Type
“Enter a positive integer” string

2 Integer

Type of a variable

�  The type of a variable is the type of what it was most
recently assigned.

Example:
 x = 15
 type(x) int
 x = x*1.0
 type(x) float

 This ability of the same variable to have different
types within a program is called dynamic typing.

Operators and data types

�  The meaning of operators (e.g., +, /) depends on the
data types they are operating on.

 Expression Value
 9/2 4
 9.0/2 4.5
 9/2.0 4.5
 5 + 1 6
 5 + 1.0 6.0
 “hello,”+” friend” “hello, friend”

Conversions between data types

�  Python provides built-in functions for converting
between data types.

�  Examples:
 Expression Value

 int(“320”) 320
 float(“320”) 320.0
 str(134) “134”

Last slide on the first line

n = int(raw_input("Enter a positive integer:"))

1.  raw_input prints the prompt and reads a line of the

user’s input as a string.

2.  This string gets converted to an integer by the
function int.

3.  This integer gets assigned to the variable n.

How do while statements affect program flow?

 Line 1
 while boolean expression:
 Line 2
 Line 3
 Line 4

Flow
Line 1,
bool expr, Line 2, Line 3,
bool expr, Line 2, Line 3,
…
bool expr
Line 4

Line 1

Is boolean
expression true?

Line 2

Line 3

Line 4

no

yes

Body of while loop

 Line 1
 while boolean expression:
 Line 2
 Line 3
 Line 4

�  Lines 2 and 3 form the body of the while loop

�  Python uses indentation to identify the lines

following the while statement that constitute the
body of the while loop.

Boolean expressions

�  Python has a type called bool

�  The constants in this type are True and False.
 (Not true and false!)

�  The comparison operators:

 < > <= >= != ==
 can be used to construct boolean expressions, i.e.,
expressions that evaluate to True or False.

Boolean expressions: examples

�  Suppose x has the value 10

 Expression Value
 x < 10 False
 x != 100 True
 x <= 10 True
 x > -10 True
 x >= 11 False

A silly while loop example

 n = int(raw_input("Enter a positive integer:"))
 while n != 0:
 n = n – 2

�  What happens when input is 8?
�  What happens when the input is 9?

The biggest danger with while loops is that they may
run forever.

