
J A N 2 0 T H 2 0 1 2

The First Programming
Problem

Problem: Converting decimal numbers to binary

�  Given a non-negative integer, convert it into its
binary equivalent.

� Example:
¡  Input: 123 Output: 1111011
¡  Input: 1363 Output: 10101010011
¡  Input: 12 Output: 1100

Plan of Action

1.  Understand the problem. What does “binary
equivalent” mean?

2.  Design algorithms for the problem. How would we
solve the problem with a pencil and paper?

3.  Write down pseudocode for the algorithm.

4.  Translate the pseudocode to Python code.

5.  Test, test, test.

This example will illustrate

�  Constants
�  Variables
�  Operators
�  Data types
�  Expressions
�  Function calls
�  Input statements
�  Output statements
�  Control flow statements

Decimal numbers revisited

Consider the decimal number 8,374.

Place value 1000 100 10 1

Therefore, the “value” of this number is

 8 x 1000 + 3 x 100 + 7 x 10 + 4 x 1

8 3 7 4

What are binary numbers?

Similarly, consider the binary number 10110110.

Place values: 128 64 32 16 8 4 2 1

Just like the place values for decimal numbers are powers of
10, the place values for binary numbers are powers of 2.

Therefore, the “value” of this number is

 128 + 32 + 16 + 4 + 2 = 182

1 0 1 1 0 1 1 0

Table of Binary Equivalents

Decimal Binary
0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

Two observations based on this table

Observation 1:
If n is even, then its binary equivalent ends with a 0;
otherwise if n is odd, its binary equivalent ends with 1.

Two observations based on the table

Observation 2:
Suppose that the binary equivalent of n is

 bk … b2 b1 b0

If n is even, then the binary equivalent of n/2 is
 bk … b2 b1

and if n is odd, then the binary equivalent of (n-1)/2 is
 bk … b2 b1

This suggests an algorithm

�  Check if the given number n is odd or even.

�  If n is even, we know that its binary equivalent ends
with 0. Furthermore, to get the rest of n’s binary
equivalent, we need to “consult” n/2.

�  If n is odd, we know that the binary equivalent ends
with 1. Furthermore, to get the rest of n’s binary
equivalent, we need to “consult” (n-1)/2.

Ilustration of this algorithm

Let the given input be n = 203.

1. n = 203 is odd. So rightmost bit is 1.
To get the rest of the answer we should “consult” (n-1)/2 = 101.
2. n = 101 is odd. So the rightmost bit is 1.
To get the rest of the answer we should “consult” (n-1)/2 = 50
3. n = 50 is even. So the rightmost bit is 0.
To get the rest of the answrt we should “consult” n/2 = 25.
4. n = 25 is odd. So the rightmost bit is 1.
To get the rest of the answer we should “consult” (n-1)/2 = 12.
5. n = 12 is even. So the rightmost bit is 0.
To get the rest of the answrt we should “consult” n/2 =6.
6. n = 6 is even. So the rightmost bit is 0.
To get the rest of the answrt we should “consult” n/2 =3.
7. n = 3 is odd. So the rightmost bit is 1.
To get the rest of the answer we should “consult” (n-1)/2 = 1.
8. n = 1 is odd. So the rightmost bit is 1.
To get the rest of the answer we should “consult” (n-1)/2 = 0.

So the output (right to left) is 1 1 0 1 0 0 1 1.

Pseudocode

1.  Read the number n given as input.
2.  If n is even, output 0. Replace n by n/2.
3.  If n is odd, output 1. Replace n by (n-1)/2.
4.  If n is 0, stop. Otherwise go to Line 2.

Note that this algorithm produces the binary
equivalent of n in “right to left order.”

Our first program

 n = int(raw_input("Enter a positive integer:"))
 while n > 0:

 print n % 2
 n = n/2

