
F E B 8 T H 2 0 1 2

Expressions in Python

Well-formed expressions

�  Examples:
¡  1 - 2 * 4 ** 3 – 24
¡  len(str(bin(2222/10)))
¡  (currentNumber < max) and (currentNumber >= secondMax)
¡  not False or True and not True
¡  56 +++++ 32 --- 25
¡  250/0
¡  len(str(bin(2222)/10))

�  Examples of “ill-formed” expresions:
¡  (23 + abs(-9)
¡  “33 + “25”
¡  3(12 + 4)

Well-formed expressions

�  Python has a bunch of rules for determining whether an expression has
correct structure (similar to grammar rules in a language that
determine whether a sentence has correct structure).

�  These rules, by themselves, do not guarantee that the expression is
meaningful (see the last two well-formed expression examples from the
previous slide).

�  These rules are what you would expect:
¡  A constant or variable by itself is a well-formed expression.
¡  A unary operator (e.g., -, not) should be followed by a well-formed expression.
¡  A binary operator should be preceded by and followed by well-formed expressions.
¡  If you put parentheses around a well-formed expression, it will be well-formed.
¡  If f is a function name and X, Y, Z, etc. are well-formed expressions, then f(), f(X), f(X,

Y), f(X, Y, Z), etc. are all well-formed expressions.

Evaluating expressions

�  Syntax rules defining well-formed expressions tell us
which expressions are structurally correct, but do not tell
us how to evaluate expressions.

�  Here are examples of expressions in which there is some
ambiguity.

�  Examples:
 1 - 2 * 4 ** 3 – 24
 not False or True and not True

�  Python has rules on order of evaluation and operator

precedence to help resolve such ambiguities.

Python’s algorithm for evaluating expressions

1.  Evaluate expressions inside inner-most
parentheses first.

2.  Evaluate sub-expressions involving operators with
higher precedence first.

3.  Sub-expressions involving operators of the same
precedence are evaluated left to right.

�  Rule (1) implies that parentheses can be used to

override the other rules.

Operator precedence

Operator Meaning

f (…) function application

** exponentiation

-E change sign

*, /, //, % multiplication, division, remainder

+, - addition, subtraction

<, >, <=, >=, ==, != comparison

not logical negation

and logical conjunction

or logical disjunction

Examples

1.  not False or True and not True
1.  not False is evaluated first: True or True and not True
2.  Not True is evaluated next: True or True and False
3.  True and False is evaluated next: True or False
4.  True or False is evaluated next: True

2.  1 - 2 * 4 ** 3 – 24
1.  4 ** 3 is evaluated first: 1 – 2 * 64 – 24

2.  2 * 64 is evaluated next: 1 – 128 – 24
3.  1 – 128 is evaluated next: -127 – 24
4.  -127 – 24 is now evaluated: -151

and and or are “short-circuit” operators

�  In evaluating boolean operators and and or Python
tries to get away with the minimum evaluation
needed to figure out the value of the expression.

�  A and B:
¡  A is evaluated first.

¡  If A is False then the expression evaluates to False, without B
being evaluated.

¡  If A is True then B is evaluated and the expression evaluates
to the value of B.

Try evaluating these example expressions

�  100/0
�  False and (100/0)
�  (100/0) and False
�  True and (100/0)
�  (100/0) and True

and and or are “short-circuit” operators

�  A or B:
¡  A is evaluated first.

¡  If A is True then the expression evaluates to True, without B
being evaluated.

¡  If A is False then B is evaluated and the expression evaluates
to the value of B.

Python associates boolean values to everything

�  Every object (e.g., “6”, 9.98, “”) has an associated
boolean value.

�  Use the bool function to find out the boolean value of
an object.

�  Examples: Try evaluating
 bool(“a”) bool(0) x = 6
 bool(“”) bool(1) bool(x)

What is True? And what is False?

True False

The constant True The constant False

1, numbers other than 0 0

Non-empty strings Empty strings

Later when we study Lists, Dictionaries, etc., we will
see that empty instances of these types of objects are
also considered False.

A new version of the intToBinary program

 while n:

 suffix = str(n%2) + suffix
 n = n/2

The boolean expression after the while can just be
n instead of n > 0.

Some silly examples

�  10 < 20 and 50
�  “hello” and “” or 70 < 20
�  not not not 20

