
F E B 6 T H 2 0 1 2

The float type and more on
variables

The float type

�  Numbers with decimal points are easily represented in
binary:
¡  0.56 (in decimal) = 5/10 + 6/100
¡  0.1011 (in binary) = ½+0/4 + 1/8 +1/16

�  The ith bit after the decimal point has place value 1/2i.

�  Example: 0.1101 = ½ + ¼ + 1/16 = 13/16 = 0.8125

�  However, not all real numbers (even rational numbers)
can be represented exactly by finite sums of these
fractions.

Be wary of floating point errors

�  Try 0.1 + 0.2
�  Try adding 0.1 ten times.
�  Try 0.1 + 0.1 + 0.1 – 0.3

�  In general, never test for equality with floating point
numbers.

�  This is an infinite loop! Try it.
 sum = 0.1
 while sum != 1:
 sum = sum + 0.1

Some functions for floating point numbers

�  The math module contains functions (e.g., math.sqrt
(x)) for floating point numbers.

 Function What it does

math.ceil(x) Returns the ceiling of x as a float

math.floor(x) Returns the floor of x as a float

math.trunc(x) Returns x truncated to an int

math.exp(x) Returns ex

math.log(x) Returns logarithm of x to the base e

math.log(x, b) Returns logarithm of x to the base b

There are many other functions in the math module:
trignometric, hyperbolic, etc. There are also constants:
math.pi and math.e.

Try solving these problems

�  Given the radius of a circle, find its area.
�  Given a positive integer, find the number of digits it

has.
 Example: int(math.ceil(math.log(565656, 10)))
�  There are also some built-in Python functions that

are useful for math:
¡  round(x, n): returns the floating point value x rounded to n

digits after the decimal point. If n is omitted, it defaults to
zero.

¡  abs(x): returns the absolute value of x

Range of floating point numbers

�  What is the largest floating point number in Python?
Here is an interesting way to find out:
 prod = 1.0
 while prod*1.1 != prod:
 prev = prod
 prod = prod*1.1
 print prev, prod

�  The output is 1.78371873262e+308 inf

What does this output mean?

� Python uses an object called inf to represent
positive infinity.

� When 1.78371873262e+308 was multiplied by 1.1
(i.e., increased by 10%), we went beyond the upper
limits of type float.

�  This means that the largest floating point number in
Python has 308 digits.

�  Notice that the while-loop terminated because
 inf * 1.1 equals inf.

A better version of this program

 import math
 prod = 1.0
 while not math.isinf(prod):
 prev = prod
 prod = prod*1.1
 print prev, prod

•  There is a function called isinf(x) in the math module that
tells us if x equals inf.

The sys module contains information on the
largest float

�  Try:
 import sys
 sys.float_info.max

� On my machine this value is
 1.7976931348623157e+308

Sequence types

�  There are seven sequence types in Python: strings,
Unicode strings, lists, tuples, bytearrays, buffers,
and xrange objects.

�  Later we will study study strings, lists, and tuples in
more detail.

�  There are many powerful built-in operations on

sequence types provided by Python. Stay tuned for
details.

Variables in Python

�  Variables are “sticky notes” attached to objects.
�  What happens during the assignment statement?

 x = 10

�  A memory cell (made up of 4 or 8 bytes) is created

and 10 is placed in it.

�  The name x is attached (“stuck”) to this memory cell.

More on variables

�  What happens when x = x + 1 is executed?

1.  The object that x is attached to (i.e., 10) is copied

into some working area.
2.  1 is added to this object.
3.  The new object (i.e., 11) is moved into a (different)

memory cell.
4.  The name x is now attached to this new memory

cell.

Multiple “sticky notes” at the same location

�  What happens when we execute:
 x = 10
 y = x
 x = x +1

1.  x is a “sticky note” attached to a memory cell containing 5.
2.  Then y is also stuck to this very location.
3.  When x = x + 1 is executed, remember the memory cell

containing 10 remains unchanged and the “sticky note” x is
moved to the cell with 11.

4.  Therefore y continues to have value 10.

Variable names

�  Variable names need to start with a letter (upper or
lower case) or an underscore (i.e., _).

�  Following the first character, any sequence of letters,
digits, and underscores is allowed.

�  Python has a small number of keywords, that cannot
be used as variable names:

 and del from not while as elif global
 or with assert else if pass yield break
 except import print class exec in raise continue
finally is return def for lambda try

More on variables

�  Case matters. The variables count and Count are
different.

�  Do not use lower case el (“l”), upper case oh (“O”), or
upper case eye (“I”) as single letter variable names.
These are hard to distinguish from numerals 0 and 1
in some fonts.

�  Use meaningful names: e.g., factorBound,
myUpperLimit, sequenceLength, etc.

�  Watch out for spelling errors in variable names.

Scope of a variable

�  In Python there is no explicit variable declaration.
�  In many languages (C, Java, etc.) variables have to be

declared before they can be used.
�  In programs in these languages, a variable comes into

existence when it gets declared.
�  In Python, a variable comes into existence when it is first

assigned a value.
�  The variable lives until the end of the program or until it is

explicitly deleted using the del operator (this operator will
become useful later).

�  The scope of a variable is the portion of the program that
the variable is in existence for.

