
F E B 3 R D 2 0 1 2

A Second Look:
constants, data types, variables, expressions,….

More in-depth discussion

�  Data types
�  Variables
�  Expressions
�  Key words
�  Built-in functions
�  Modules
�  Control flow statements

Data types

�  We have seen four data types thus far:

¡  int: -90, 8987

¡  float: 9.98, -3.54

¡  str: “hello”, “a”

¡  bool: True, False

Numeric data types

�  Python supports four numeric data types:
¡  plain integers,
¡  long integers,
¡  floating point numbers, and
¡  complex numbers.

�  Plain integers, i.e., objects of type int, are those that
fit in 32 bits.

Bits, bytes, words

�  A bit (short for binary digit) is the smallest unit in a computer.

�  A byte is 8 bits; a word is 2 bytes (16 bits).

�  Any integer that can be represented in binary using 4 bytes (or

2 words or 32 bits) is an int type object in Python.

�  The largest int object is
 231 - 1 = 2147483647

And the smallest is -2147483648

Playing with these notions

�  Try
 import sys
 sys.maxint

�  Also try this
 n = -37
 bin(n)
 n.bit_length()

�  Try this also
 type(sys.maxint+1)

A few words on long type

�  Integers of type long can be arbitrarily large (or small). In
other words, the type long provides infinite precision.

�  A long constant can be explicitly specified by appending
an L at the end of the integer. Try

 x = 875L
 type(x)

�  Operations can be performed on a mix of long and int

objects; the type of the answer will be the larger type, i.e.,
long.

The float type

�  Numbers with decimal points are easily represented in
binary:
¡  0.56 (in decimal) = 5/10 + 6/100
¡  0.1011 (in binary) = ½+0/4 + 1/8 +1/16

�  The ith bit after the decimal point has place value 1/2i.

�  Example: 0.1101 = ½ + ¼ + 1/16 = 13/16 = 0.8125

�  However, not all real numbers (even rational numbers)
can be represented exactly by finite sums of these
fractions.

Be wary of floating point errors

�  Try 0.1 + 0.2
�  Try adding 0.1 ten times.
�  Try 0.1 + 0.1 + 0.1 – 0.3

�  In general, never test for equality with floating point
numbers.

�  This is an infinite loop! Try it.
 sum = 0.1
 while sum != 1:
 sum = sum + 0.1

Some functions for floating point numbers

�  The math module contains functions (e.g., math.sqrt
(x)) for floating point numbers.

 Function What it does

math.ceil(x) Returns the ceiling of x as a float

math.floor(x) Returns the floor of x as a float

math.trunc(x) Returns x truncated to an int

math.exp(x) Returns ex

math.log(x) Returns logarithm of x to the base e

math.log(x, b) Returns logarithm of x to the base b

There are many other functions in the math module:
trignometric, hyperbolic, etc. There are also constants:
math.pi and math.e.

Try solving these problems

�  Given the radius of a circle, find its area.
�  Given a positive integer, find the number of digits it

has.
 Example: int(math.ceil(math.log(565656, 10)))
�  There are also some built-in Python functions that

are useful for math:
¡  round(x, n): returns the floating point value x rounded to n

digits after the decimal point. If n is omitted, it defaults to
zero.

¡  abs(x): returns the absolute value of x

Range of floating point numbers

�  What is the largest floating point number in Python?
Unfortunately, there is no sys.maxfloat. Here is an
interesting way to find out:
 prod = 1.0
 while prod*1.1 != prod:
 prev = prod
 prod = prod*1.1
 print prev, prod

�  The output is 1.78371873262e+308 inf

What does this output mean?

� Python uses an object called inf to represent
positive infinity.

� When 1.78371873262e+308 was multiplied by 1.1
(i.e., increased by 10%), we went beyond the upper
limits of type float.

�  This means that the largest floating point number in
Python has 308 digits.

�  Notice that the while-loop terminated because
 inf * 1.1 equals inf.

A better version of this program

 import math
 prod = 1.0
 while not math.isinf(prod):
 prev = prod
 prod = prod*1.1
 print prev, prod

•  There is a function called isinf(x) in the math module that
tells us if x equals inf.

