
F E B 1 0 T H

Functions and Modules

Functions in Python

�  A function in math, often denoted f : X -> Y, associates with x in X a
unique value f(x) in Y.

�  Examples: (a) f(x) = x2. Here x can be any real number and f(x) is
a non-negative real number .

 f(3) = 9, f(-1.1) = 1.21, f(15) = 225, etc.

 (b) f(x) = √x. Here x can be any positive real number and f(x) is a

positive real number.
 f(25) = 5, f(100) = 10, f(20) = 4.47213, etc.

�  x is called the argument to the function f.
�  We are also taught to sometimes view f: X -> Y as a “black box” to

which you provide an x as input and out comes f(x).

Functions in Python

�  Most programming languages provide ways of
defining the computational equivalent of this.

�  For example, the math module contains the
definition of a function called sqrt.

�  This is a piece of Python code that, when given the
value of an argument, computes and returns the
square root of that argument.

�  This allows us to write code such as:
 factorBound = math.sqrt(n)

Functions in Python

�  One way to categorize functions in Python is:

1.   Built-in functions: these functions pre-defined

and are always available.
2.   Functions defined in modules: these functions

are pre-defined in particular modules and can only
be used when the corresponding module is
imported.

3.   User defined functions: these are defined by the
programmer.

Built-in Functions

�  Python documentation lists 80 built-in functions at:
http://docs.python.org/library/functions.html

�  Math functions: abs(x), round(x, n)
�  Type conversion functions:
 bool(x), float(x), int(x), long(x), str(x)
�  Input functions: raw_input(x), input(x)
�  Miscellaneous: len(x), type(x)

What is input()?

�  The function input(prompt) treats what the user
types as input as a Python expression and returns the
evaluated value.

�  I prefer raw_input(prompt) to input(prompt) in
general because it gives the programmer more
control on how to interpret the input.

�  input(prompt) is okay when all you are expecting is
simple numeric input.

�  In Python version 3, raw_input(prompt) has been
renamed as input(prompt).

Functions in modules

�  The modules we have used so far are:
 sys, math, time

�  There are 100s of “standard” modules in Python:

¡  Generation of random numbers and probability distributions
¡  Accessing files and directories
¡  Web development
¡  Network programming
¡  Graphics, etc.

�  A module is simply a file (just like the files that you have been creating your
programs in) that contains related Python statements and function
definitions.

�  Programmers can define their own modules. There are 1000s of third-party
modules available for Python.

Importing from modules

�  We have used statements of the form
 import math
to import from modules.
�  When we import a module X in this manner, we

need to use X.name to refer to an item called name
that is defined in the module X.

�  Examples: math.sqrt(25) or math.pi
�  There are some other ways of importing from

modules as well.

Another way of importing from modules

�  You can also use
 from X import *
�  In this case, you can directly refer to items in the

module X, without using the “X.” prefix.
�  Try
 from math import *
 You can use sqrt(35) or pi or e without the “math.”

prefix.
�  Beware of new items (variables, functions, etc.) that

you don’t know about coming into existence.

The random module

�  Programs for games and simulation use
randomization extensively.

�  In games, you want to add an element of

randomness to the obstacles or adversaries.

�  In simulations (e.g., traffic simulation) you want to
introduce actors into your simulation according to
certain probability distribution.

Some functions in the random module

�  random.randint(a, b): return a random integer N
such that a <= N <= b.

�  random.random(): Return the next random floating
point number in the range [0.0, 1.0).

�  random.uniform(a, b): Return a random floating
point number N such that a <= N <= b for a <= b
and b <= N <= a for b < a.

Is Python’s coin (die) unbiased?

�  Problem: Write a program that takes as input a
positive integer n and reports the number of heads
that appear when a coin in tossed n times.

�  Problem: Roll a 6-sided die n times, where n is a
positive integer provided as input, and report the
number of times each outcome appears.

If we take a random walk, will we go places?

�  Problem: Simulate a random walk in which a
person starts of at point 0 and at each step randomly
picks a direction (left or right) and moves 1 step in
that direction.

�  Take a positive integer n and terminate the
simulation when the walk reaches n or –n.

�  Report the average number of steps it took for the
walk to terminate.

�  Do this for various n and plot the results to get a
sense of how rapidly the walk terminates, as a
function of n.

