
22C:16 Homework 3
Due via ICON on Wednesday, Feb 15, 4:59 pm

What to submit: Your submission for this homework will consist of four files. One of these will
be a pdf file called homework3.pdf. This will contain the answers to Problems 2, 4, 5, and 7. This
pdf file should start with your name, section number and student ID. The remaining files should
be called PythagoreanTriple.py (solution to Problem 1), countPythagoreanTriples.py (so-
lution to Problem 3), and PythagoreanQuadruple.py (solution to Problem 6). Each of these
Python files should start also with your name, section number and student ID appearing at the
top of the file as Python comments. You will get no credit for this homework if your files are
named differently, have a different format (e.g., docx), or if your files are missing your informa-
tion.

1. A Pythagorean triple is a sequence of three positive integers (x, y, z), x < y < z, such that
x2 + y2 = z2. Examples of Pythagorean triples are: (3, 4, 5), (5, 12, 13), (6, 8, 10), etc.

Write a Python program that reads a positive integer, say M , and generates all Pythagorean
triples (x, y, z) such that x ≤ M and y ≤ M . Type this program into a Python IDE and
save it as a file called PythagoreanTriple.py. Your program should include comments as
discussed in the class lecture, including a section at the start that includes your full name,
section, and student ID. Your program may assume that the user will input only a positive
integer for M and does not have to do any error checking.

2. Use your program from Problem 1 to find a Pythagorean triple (x, y, z) such that 1500 ≤
x ≤ 1700 and 1500 ≤ y ≤ 1700. Write down one such triple as the answer to this problem.

3. Modify your program from Problem 1 to make it count Pythagorean triples. More specifi-
cally, write a Python program that reads a positive integer, say M , and counts the number
of distinct Pythagorean triples (x, y, z) such that x ≤ M and y ≤ M . Your program should
print this count.

Type this program into a Python IDE and save it as a file called countPythagoreanTriples.py.
Your program should include comments as discussed in the class lecture, including a sec-
tion at the start that includes your full name, section, and student ID. Your program may
assume that the user will input only a positive integer for M and does not have to do any
error checking.

4. Use your program from Problem 3 to find the number of distinct Pythagorean triples
(x, y, z) such that x ≤ 10, 000 and y ≤ 10, 000. Write down this count as the answer to
this problem.

5. Recall how we timed code fragments using functions from the time module. In this prob-
lem, we want use to use a similar approach to acquire a sense of how long it takes to
generate Pythagorean triples. For each M = 1000, 2000, . . . , 10000 compute the running
time of the Python program you wrote for Problem 3. Make a plot of the running times,
with the x-axis showing M and the y-axis showing the running time of your program, when
executed with input M . Based on the shape of your plot, make a guess about how the
running time of your program grows as M increases.

6. A natural generalization of the notion of Pythagorean triples is the following. Let us define
a Pythagorean quadruple as a sequence (a, b, c, d) of positive integers, a ≤ b ≤ c ≤ d such
that a2 + b2 + c2 = d2.

Write a Python program that reads a positive integer, say M , and generates all Pythagorean
quadruples (a, b, c, d) such that a ≤ M , b ≤ M , and c ≤ M . Type this program into a

1



Python IDE and save it as a file called PythagoreanQuadruple.py. Your program should
include comments as discussed in the class lecture, including a section at the start that
includes your full name, section, and student ID. Your program may assume that the user
will input only a positive integer for M and does not have to do any error checking.

7. Use your program from Problem 6 to find all Pythagorean quadruples (a, b, c, d) such that a,
b, and c are all between 10 and 20 (inclusive of 10 and 20). Write down all such quadruples
as the answer to this problem.

2


