
22C:16 Homework 10
Due via ICON on Monday, May 2nd, 4:59 pm

Submit the solutions to all 4 problems, but we will grade some 2 problems of our choice from
your submission.

1. A sequence of numbers
x1, x2, . . . , xn

is called bitonic if there is an integer j, 1 ≤ j ≤ n, such that x1 < x2 < · · · < xj and
xj > xj+1 > · · · > xn. In other words, a bitonic sequence consists of a bunch of numbers
at the beginning that are in strictly ascending order followed by a bunch of numbers in
strictly descending order.

Write a function called findBitonicMax that takes a list L of numbers that forms a bitonic
sequence and returns an index of the maximum number in L. Of course, it is possible to
find the maximum number by simply doing a left-to-right scan of the elements in L. A
much more efficient way would be to solve this problem by using a “binary search” like
algorithm. Specifically, you could examine the element in the middle of L along with its two
neighbors on either side and based on what you see, you can determine if (i) the maximum
is the middle element, (ii) the maximum is on the left side of the middle element, and (iii)
the maximum is on the right side of the middle element.

Implement this “binary search” like algorithm (think recursion!) using the following func-
tion header:

def findBitonicMax(L, first, last):

This function is meant to return an index of the maximum element in L[first:last+1].
To find the maximum element in all of L, the user would have to call this function as
findBitonicMax(L, 0, len(L)-1).

2. This problem is also about bitonic sequences (see Problem 1). Write a function called
searchBitonic that takes a list L that consists of a bitonic sequence and a key value k
and determines if k is an element of L; the function simply returns True or False depending
on whether it found k in L.

To do this efficiently, you should call the function findBitonicMax first to find an index j
such that L[0:j+1] is strictly ascending and L[j:len(L)] is strictly descending. Then you
can do a binary search on L[0:j+1] and a separate binary search on L[j:len(L)]. You
should make sure that searchBitonic runs in time proportional to log2 n, in the worst
case.

Use the following function header:
def searchBitonic(L, k, first, last):

This function is meant to search for k in L[first:last+1]. To search for k in all of L, the
user would have to call this function as searchBitonic(L, k, 0, len(L)-1).

3. In this problem you will use the file words.dat that I posted for Homework 9. Also, you
will use the makeNeighbors function that you made for Problem 1 in Homework 9.

You are to write a program that reads two 5-letter words from the input. Let us call these
words s and t. Your program should compute and outout a sequence of words that starts
with s and ends with t such that each intermediate word in the sequence is obtained from
the previous word in the sequence by replacing exactly one letter in the word. You may
assume that s and t appear in words.dat and every word in the output is required to
belong to words.dat. It is possible that there is no such sequence from s to t and in this
case your program should produce a message saying so.

1



This is a fun application of recursion that is usually taught in more advanced classes (e.g.,
22C:21 or 22C:31). However, the algorithm that you can use to solve this problem is fairly
natural and corresponds to how you would explore a maze. The algorithm is called depth
first search and you will find many expositions of this on the web.

The basic idea is to start from word s, mark it “visited” and travel to an (arbitrary)
neighbor; let us call this neighbor v. On arriving at v, you mark it “visited” and then
move on to an arbitrary not-yet-visited neighbor. The process continues in this manner,
until you arrive at a node that has no not-yet-visited neighbors. You have now reached
a dead end and it is time to backtrack to the most recently visited word that has one or
more not-yet-visited neighbors. This process is naturally implemented by making use of
recursion.

4. This problem asks you to compare the running times of selection sort and merge sort. Use
the Python code posted one the course website for both of these algorithms.

To perform this experiment, let us start with a positive integer n that will be the size of
the list you want sorted. Randomly generate m lists, each of size n, and sort each of these
lists first using selection sort and then using merge sort. Compute the average running
time of selection sort, with the average taken over m runs. Similarly, compute the average
running time of merge sort. My suggestion is to use m = 20; but depending on how slow
your selection sort function is running, you may have to reduce this down to m = 10. For
n, my suggestion is to use values 100,000 to 190,000 in increments of 10,000.

An easy way to generate random (unsorted) sequences of numbers is to use the shuffle
function from the random module.

After you have finished your experiment, make two plots, one showing the running time
of selection sort and the other showing the running time of merge sort. Write a paragraph
discussing your results. Make sure your write-up address the following issues: (i) which of
the algorithms is faster and how do the relative times change with increasing n, and (ii) do
the plots of the running times you see in your experiments correspond to what you have
learned about the running times of these algorithms in class.

2


