
M A R C H 2 1 S T

Operations that modify lists

Two useful functions

 ord(ch)
if ch is a single character string, this function returns the
ASCII code for ch

 chr(i)
returns a string of one character whose ASCII code is the
integer i

What is ASCII?
It stands for the American Standard Code for Information

Interchange. It assigns a number in the range 0..255 to
every character that can be entered at the keyboard.

More on ASCII

 The numbers 0..31 are reserved for unprintable
characters, e.g., the tab character (“\t”), the end of
line character (“\n”), etc.

 32 is the ASCII value of the space character (“ “)

 33..47 is used for some punctuation characters

 48..57 is used for digits “0” through “9”

 65..90 is used for upper case letters

 97..122 is used for lower case letters

ASCII Table

Some examples of chr and ord in action

>>> ord("a")
97
>>> chr(97)
'a'
>>> ord(" ")
32
>>> ord("0")
48
>>> chr(48)
'0'
>>> chr(49)
'1'
>>> ord("A")
65
>>> ord("B")
66

How are these functions useful?

 Because of the the fact that all the upper case letters
occur consecutively in the ASCII table, the
expression ord(ch) – ord(“A”) has value 0 for ch=
“A”, value 1 for ch = “B”, has value 2 for ch = “C”, etc.

 Similarly, ord(ch)-ord(“a”) has value 0 for ch = “a” ,
has value 1 for ch = “b”, has value 2 for ch = “c”, etc.

A program to count letter frequencies

f = open("war.txt")

L = [0]*26

s = f.read()

for ch in s:

if ch.isupper():

L[ord(ch)-ord("A")] = L[ord(ch)-ord("A")] + 1

elif ch.islower():

L[ord(ch)-ord("a")] = L[ord(ch)-ord("a")] + 1

print L

Notice how ord(ch)-ord(“A”) and ord(ch)-ord(“a”) are used
to index into the list L.

Another example

 The ord and chr functions can be used to perform

Caeser’s Cipher (Problem 3, HW 7).

 Try this: chr(ord(“a”) + 4)

 What does this expression evaluate to?

Lists and strings also have important differences

 In Python some data types are mutable, i.e., they can be modified in
place.

 Of the data types we have seen so far, e.g., int, long, float, bool, str,
and list, only list is mutable.

Example:
>>> L = [3, 4, 5]
>>> type(L)
<type 'list'>
>>> L[0] = 8
>>> L
[8, 4, 5]

>>> s = "hello"
>>> type(s)
<type 'str'>
>>> s[0]
'h'
>>> s[0] = "t"
Traceback (most recent call last):
File "<string>", line 1, in <fragment>

TypeError: 'str' object does not support item assignment

By doing an assignment to L[0], we have replaced
the first element in the list L.

We can examine elements in the string s in a similar
manner, but we cannot assign anything to s[0]

More examples

Example:
>>> id(L)

12494888

>>> L[0] = 11

>>> id(L)

12494888

>>> n = 10

>>> id(n)

10022540

>>> n = 12

>>> id(n)

10022516

Recall that we said the id function when applied to a
variable name, returns the location pointed to by that
variable. Notice how the location of L does not change as
a result of replacing the first element by something else.

An assignment to an int variable does not modify the
variable “in place.” The variable ends up pointing to
another location.

List operations that modify a list “in place”

Replacing single elements or slices of lists

 L[0] = 10,

 L[3:5] = [10, 12],

 L[3:10:2] = [12,14,16, 18]

Deleting a list or its parts

 del L

 del L[3]

 del L[3:5]

 del L[3:10:2]

More such operations

Try and understand all of these operations.

 L.append(“hi”)

 L.extend([“good”])

 L.insert(4, “bye”)

 L.pop(), L.pop(4)

 L.remove(“hello”)

None of these work on strings.

And here are the last two:

 L.reverse(), L.sort()

