
F I L E I / O

T H E O R D A N D C H R F U N C T I O N S

M A R C H 1 1

Miscellaneous Topics

File I/O

 More often than not programs read from files, rather
than from input typed at the keyboard.

 Often one program reads what another program outputs.

 More and more, programs are reading data produced by
other hardware, e.g., sensors, telescopes, microarrays,
etc.

 I these instances very little, if any, input is provided at
the keyboard.

File objects

 Simplest Python statement for opening a file:

f = open(“war.txt”)

 Assuming that there is a file called “war.txt” in the same

directory as your Python program, this statement opens
the file for reading.

 Subsequently, the file can be accessed via the variable f.

 Since f is a variable, it has a type. Try type(f).

File objects

 The variable f is often called a file object.

 If the file is missing from the directory, an error
message is issued.

>>> g = open("hello.txt")

Traceback (most recent call last):

File "<string>", line 1, in <fragment>

IOError: [Errno 2] No such file or directory: 'hello.txt„

 One a file object is successfully connected to a file
residing on your machine, we can use the file
object to read from the file in a variety of ways.

Reading from a file

 s = f.read()
Reads everything from the file into the string s

 s = f.readline()
Reads the next line from the files into s

 for line in f:
print line.split()

Allows us to read and process the file line by line

Let us solve these problems on “War and Peace”

1. Build a dictionary of words extracted from the text
that we might be able to use later, maybe in a
spellchecker.

2. Compute the number of sentences in the text.

3. Compute the frequencies of letters in the text.

Two useful built-in Python functions that can help in
solving Problem 3 are ord and chr.

Two useful functions

 ord(ch)
if ch is a single character string, this function returns the
ASCII code for ch

 chr(i)
returns a string of one character whose ASCII code is the
integer i

What is ASCII?
It stands for the American Standard Code for Information

Interchange. It assigns a number in the range 0..255 to
every character that can be entered at the keyboard.

More on ASCII

 The numbers 0..31 are reserved for unprintable
characters, e.g., the tab character (“\t”), the end of
line character (“\n”), etc.

 32 is the ASCII value of the space character (“ “)

 33..47 is used for some punctuation characters

 48..57 is used for digits “0” through “9”

 65..90 is used for upper case letters

 97..122 is used for lower case letters

ASCII Table

Some examples of chr and ord in action

>>> ord("a")
97
>>> chr(97)
'a'
>>> ord(" ")
32
>>> ord("0")
48
>>> chr(48)
'0'
>>> chr(49)
'1'
>>> ord("A")
65
>>> ord("B")
66

How are these functions useful?

 Because of the the fact that all the upper case letters
occur consecutively in the ASCII table, the
expression ord(ch) – ord(“A”) has value 0 for ch=
“A”, value 1 for ch = “B”, has value 2 for ch = “C”, etc.

 Similarly, ord(ch)-ord(“a”) has value 0 for ch = “a” ,
has value 1 for ch = “b”, has value 2 for ch = “c”, etc.

A program to count letter frequencies

f = open("war.txt")

L = [0]*26

s = f.read()

for ch in s:

if ch.isupper():

L[ord(ch)-ord("A")] = L[ord(ch)-ord("A")] + 1

elif ch.islower():

L[ord(ch)-ord("a")] = L[ord(ch)-ord("a")] + 1

print L

Notice how ord(ch)-ord(“A”) and ord(ch)-ord(“a”) are used
to index into the list L.

Another example

 The ord and chr functions can be used to perform

Caeser’s Cipher (Problem 3, HW 7).

 Try this: chr(ord(“a”) + 4)

 What does this expression evaluate to?

