
J A N 3 1 S T

Our Second Python Program

Our second programming problem

Primality Testing

Given a positive integer (> 1), determine whether it is
a prime number or not.

Examples:

Input Output

31 prime

2001 composite

987654321 composite

Algorithmic Idea

 Generate all “candidate” factors of n, namely

2, 3, …, n-1

 For each generated “candidate” factor, check if n is
evenly divisible by the factor (i.e., the remainder is
0).

 If a “candidate” factor is found to be a real factor,
then n is composite.

 If no “candidate” factor is found to be a real factor,
then n is a prime.

Algorithm in pseudocode

1. Input n

2. For each factor = 2, 3, …, n-1 do the following

3. if n is evenly divisible by factor then

4. remember that n is a composite

5. If we have detected that n is a composite

6. output that n is a composite

7. Otherwise output that n is a prime

Python code (Version 1)

number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
while(factor <= number - 1):

if(number % factor == 0):
isPrime = False

factor = factor + 1

if(isPrime):
print number, "is prime“

else:
print number, “is composite”

Discussing this code

 Boolean variables are quite useful for remembering
situations that occurred in the program, for later
reference.

 What happens if we get rid of the initialization:

isPrime = true

 Could we have used a boolean variable called
isComposite instead?

The importance of primality testing

 From time to time you may hear in the news about
the new largest prime

 Large primes are the basis of modern day
cryptography.

 Cryptography is the mathematical and
computational study of how to encode a message so
that only the intended receiver can understand the
message.

 Without cryptography online business (think
Amazon, eBay, etc.) would not be possible.

Improving the efficiency of our program

1. A number n does not have any factors larger than
n/2, except itself.

2. We know √n x √n = n. Hence, if n is a factor
larger than √n, then it has a factor smaller than √n
also.

This means that only factors 2, 3,…, floor(√n) need to
be considered.

Example

 Say n = 123.

 √123 = 11.090536506409418.

 So if 123 has a factor greater than 11.09, then it has
factor less than 11.09.

 This means in looking at “candidate” factors, we only
need to look at numbers 2, 3, …, 11.

Python code (Version 2)

import math
number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
factorBound = math.sqrt(number)
while(factor <= factorBound):

if(number % factor == 0):
isPrime = False

factor = factor + 1

if(isPrime):
print number, "is prime“

else:
print number, “is composite”

