
F E B 9 T H

Data types and variables

Bits, bytes, words

 A bit (short for binary digit) is the smallest unit in a computer.

 A byte is 8 bits; a word is 2 bytes (16 bits).

 The int type is Python uses at least 32 bits (4 bytes).

 The largest int value (on my Windows laptop) is
231 - 1 = 2147483647.

And the smallest is -231 = -2147483648.

 On my Linux desktop int uses 64 bits. So the largest value is
263 – 1 and the smallest is 263.

Playing with these notions

 Try

import sys

sys.maxint

 Also try this

n = -37

bin(n)

n.bit_length()

 Try this also

type(sys.maxint+1)

A few words on long type

 Integers of type long can be arbitrarily large (or small). In
other words, the type long provides infinite precision.

 A long constant can be explicitly specified by appending
an L at the end of the integer. Try

x = 875L
type(x)

 Operations can be performed on a mix of long and int
objects; the type of the answer will be the larger type, i.e.,
long.

The float type

 Numbers with decimal points are easily represented in
binary:
 0.56 (in decimal) = 5/10 + 6/100

 0.1011 (in binary) = ½+0/4 + 1/8 +1/16

 The ith bit after the decimal point has place value 1/2i.

 Example: 0.1101 = ½ + ¼ + 1/16 = 13/16 = 0.8125

 However, not all real numbers (even rational numbers)
can be represented exactly by finite sums of these
fractions.

Be wary of floating point errors

 Try 0.1 + 0.2

 Try adding 0.1 ten times.

 Try 0.1 + 0.1 + 0.1 – 0.3

 In general, never test for equality with floating point
numbers.

 This is an infinite loop! Try it.

sum = 0.1
while sum != 1:

sum = sum + 0.1

Some functions for floating point numbers

 The math module contains functions (e.g.,
math.sqrt(x)) for floating point numbers.

Function What it does

math.ceil(x) Returns the ceiling of x as a float

math.floor(x) Returns the floor of x as a float

math.trunc(x) Returns the x truncated to an int

math.exp(x) Returns ex

math.log(x) Returns logarithm of x to the base e

math.log(x, b) Returns logarithm of x to the base b

There are many other functions in the math module:
trignometric, hyperbolic, etc. There are also constants:
math.pi and math.e.

Try solving these problems

 Given the radius of a circle, find its area.

 Given a positive integer, find the number of digits it
has.

Example: int(math.ceil(math.log(565656, 10)))

 There are also some built-in Python functions that
are useful for math:
 round(x, n): returns the floating point value x rounded to n

digits after the decimal point. If n is omitted, it defaults to
zero.

 abs(x): returns the absolute value of x

Range of floating point numbers

 What is the largest floating point number in Python?
Unfortunately, there is no sys.maxfloat. Here is an

interesting way to find out:

prod = 1.0

while prod*2.0 != prod:

prev = prod

prod = prod*2.0

print prev, prod

• Python uses an object called inf to represent positive
infinity, with inf + 1 and inf*2.0 equal to inf.
•On my laptop it is roughly 8.98846567431e+307

Sequence types

 There are seven sequence types in Python: strings,
Unicode strings, lists, tuples, bytearrays, buffers,
and xrange objects.

 Later we will study study strings, lists, and tuples in
more detail.

 There are many very powerful built-in operations on
sequence types provided by Python. Stay tuned for
details.

Variables in Python

 Variables are “sticky notes” attached to objects. What
happens during the assignment statement:

x = 10

 A memory cell (made up of 4 bytes) is created and 10
is placed in it.

 The name x is attached to this memory cell.

More on variables

 What happens when x = x + 1 is executed?

1. The object that x is attached to (i.e., 10) is copied
into some working area.

2. 1 is added to this object.

3. The new object (i.e., 11) is moved into a memory
cell.

4. The name x is now attached to this new memory
cell.

Play with the function id(x)

 id(x) returns the “identity” of the object x.

 This is an int (or long) which is guaranteed to be

unique and constant for this object during its
lifetime.

 Two objects with non-overlapping lifetimes may
have the same id value

