
F E B 7 T H

Finishing up the primality
testing program

Python associates boolean values to everything

 Every object (e.g., “6”, 9.98, “”) has an associated

boolean value.

 Use the bool function to find out the boolean value of

an object.

 Examples: Try evaluating

bool(“a”) bool(0) x = 6

bool(“”) bool(1) bool(x)

What is True? And what is False?

True False

The constant True False

1, numbers other than 0 0

Non-empty strings Empty strings

Later when we study Lists, Dictionaries, etc., we will
see that empty instances of these types of objects are
also considered False.

A new version of the intToBinary program

while n:

suffix = str(n%2) + suffix

n = n/2

The boolean expression after the while can just be
n instead of n > 0.

and and or are “short-circuit” operators

 A and B:

 A is evaluated first.

 If A is False then the expression evaluates to False, without B

being evaluated.

 If A is True then B is evaluated and the expression evaluates

to the value of B.

Try evaluating these example expressions

 100/0

 False and (100/0)

 (100/0) and False

 True and (100/0)

 (100/0) and True

and and or are “short-circuit” operators

 A or B:

 A is evaluated first.

 If A is True then the expression evaluates to True, without B

being evaluated.

 If A is False then B is evaluated and the expression evaluates

to the value of B.

Final remarks on primality testing

 In the worst case, the while-loop in the programs
makes √n iterations.

 For an input with, say 100 digits, what might the
running time be?

 n = 10100 . Therefore √n = 1050 . Even if each
iteration of the while-loop took a nanosecond (10-9

seconds), the program would take 3.17 x 1033 years!

So how are numbers with 300 digits tested?

 Based on facts in number theory (an area of
mathematics), several fast primality-testing
algorithms have been developed.

 Examples:

Miller-Rabin test:

This is a randomized algorithm – a step in the algorithm
performed by rolling dice.

The algorithm is not always correct! A composite number may be
classified a prime, with small and tune-able error probability.

More in-depth discussion

 Data types

 Variables

 Key words

 Built-in functions

 Modules

 Control flow statements

Data types

 We have seen four data types thus far:

 int: -90, 8987

 float: 9.98, -3.54

 str: “hello”, “a”

 bool: True, False

Numeric data types

 Python supports four numeric data types:

 plain integers,

 long integers,

 floating point numbers, and

 complex numbers.

 Plain integers, i.e., objects of type int, are those that

fit in 32 bits.

Bits, bytes, words

 A bit (short for binary digit) is the smallest unit in a computer.

 A byte is 8 bits; a word is 2 bytes (16 bits).

 Any integer that can be represented in binary using 4 bytes (or
2 words or 32 bits) is an int type object in Python.

 The largest int object is

231 - 1 = 2147483647

And the smallest is -2147483648

Playing with these notions

 Try

import sys

sys.maxint

 Also try this

n = -37

bin(n)

n.bit_length()

 Try this also

type(sys.maxint+1)

A few words on long type

 Integers of type long can be arbitrarily large (or small). In
other words, the type long provides infinite precision.

 A long constant can be explicitly specified by appending
an L at the end of the integer. Try

x = 875L
type(x)

 Operations can be performed on a mix of long and int
objects; the type of the answer will be the larger type, i.e.,
long.

The float type

 Numbers with decimal points are easily represented
in binary:

 0.56 (in decimal) = 5/10 + 6/100

 0.1011 (in binary) = ½+0/4 + 1/8 +1/16

 However, not all real numbers (even rational
numbers) can be represented exactly by finite sums
of these fractions.

 So always be wary of (small) errors in dealing with
floating point numbers. Try 0.1 + 0.2.

