
F E B 7 T H

Finishing up the primality
testing program

Python associates boolean values to everything

 Every object (e.g., “6”, 9.98, “”) has an associated

boolean value.

 Use the bool function to find out the boolean value of

an object.

 Examples: Try evaluating

bool(“a”) bool(0) x = 6

bool(“”) bool(1) bool(x)

What is True? And what is False?

True False

The constant True False

1, numbers other than 0 0

Non-empty strings Empty strings

Later when we study Lists, Dictionaries, etc., we will
see that empty instances of these types of objects are
also considered False.

A new version of the intToBinary program

while n:

suffix = str(n%2) + suffix

n = n/2

The boolean expression after the while can just be
n instead of n > 0.

and and or are “short-circuit” operators

 A and B:

 A is evaluated first.

 If A is False then the expression evaluates to False, without B

being evaluated.

 If A is True then B is evaluated and the expression evaluates

to the value of B.

Try evaluating these example expressions

 100/0

 False and (100/0)

 (100/0) and False

 True and (100/0)

 (100/0) and True

and and or are “short-circuit” operators

 A or B:

 A is evaluated first.

 If A is True then the expression evaluates to True, without B

being evaluated.

 If A is False then B is evaluated and the expression evaluates

to the value of B.

Final remarks on primality testing

 In the worst case, the while-loop in the programs
makes √n iterations.

 For an input with, say 100 digits, what might the
running time be?

 n = 10100 . Therefore √n = 1050 . Even if each
iteration of the while-loop took a nanosecond (10-9

seconds), the program would take 3.17 x 1033 years!

So how are numbers with 300 digits tested?

 Based on facts in number theory (an area of
mathematics), several fast primality-testing
algorithms have been developed.

 Examples:

Miller-Rabin test:

This is a randomized algorithm – a step in the algorithm
performed by rolling dice.

The algorithm is not always correct! A composite number may be
classified a prime, with small and tune-able error probability.

More in-depth discussion

 Data types

 Variables

 Key words

 Built-in functions

 Modules

 Control flow statements

Data types

 We have seen four data types thus far:

 int: -90, 8987

 float: 9.98, -3.54

 str: “hello”, “a”

 bool: True, False

Numeric data types

 Python supports four numeric data types:

 plain integers,

 long integers,

 floating point numbers, and

 complex numbers.

 Plain integers, i.e., objects of type int, are those that

fit in 32 bits.

Bits, bytes, words

 A bit (short for binary digit) is the smallest unit in a computer.

 A byte is 8 bits; a word is 2 bytes (16 bits).

 Any integer that can be represented in binary using 4 bytes (or
2 words or 32 bits) is an int type object in Python.

 The largest int object is

231 - 1 = 2147483647

And the smallest is -2147483648

Playing with these notions

 Try

import sys

sys.maxint

 Also try this

n = -37

bin(n)

n.bit_length()

 Try this also

type(sys.maxint+1)

A few words on long type

 Integers of type long can be arbitrarily large (or small). In
other words, the type long provides infinite precision.

 A long constant can be explicitly specified by appending
an L at the end of the integer. Try

x = 875L
type(x)

 Operations can be performed on a mix of long and int
objects; the type of the answer will be the larger type, i.e.,
long.

The float type

 Numbers with decimal points are easily represented
in binary:

 0.56 (in decimal) = 5/10 + 6/100

 0.1011 (in binary) = ½+0/4 + 1/8 +1/16

 However, not all real numbers (even rational
numbers) can be represented exactly by finite sums
of these fractions.

 So always be wary of (small) errors in dealing with
floating point numbers. Try 0.1 + 0.2.

