Finishing up the primality
testing program

O




Every object (e.g., "6", 9.98, "") has an associated
boolean value.

Use the bool function to find out the boolean value of
an object.

Examples: Try evaluating
bool("a") bool(0) x=6
bool(*") bool(1) bool(x)




What is True? And what is False?

O

The constant True False
1, numbers other than o 0
Non-empty strings Empty strings

Later when we study Lists, Dictionaries, etc., we will
see that empty instances of these types of objects are
also considered False.




A new version of the intToBinary program

O

The boolean expression after the while can just be
hinstead of n > O.




and and or are “short-circuit” operators

O




100/0

False and (100/0)
(100/0) and False
True and (100/0)
(100/0) and True



and and or are “short-circuit” operators

O




In the worst case, the while-loop in the programs
makes Vn iterations.

For an input with, say 100 digits, what might the
running time be?

n = 10'°° . Therefore vn = 105° . Even if each
iteration of the while-loop took a nanosecond (10
seconds), the program would take 3.17 x 1033 years!



So how are numbers with 300 digits tested?

O

» Based on facts in number theory (an area of
mathematics), several fast primality-testing
algorithms have been developed.

» Examples:
Miller-Rabin test:

This is a randomized algorithm — a step in the algorithm
performed by rolling dice.

The algorithm is not always correct! A composite number may be
classified a prime, with small and tune-able error probability.




More in-depth discussion

O




Data types

O




Python supports four numeric data types:
plain integers,
long integers,
floating point numbers, and
complex numbers.

Plain integers, i.e., objects of type int, are those that
fit in 32 bits.



A bit (short for binary digit) is the smallest unit in a computer.
A byte is 8 bits; a word is 2 bytes (16 bits).

Any integer that can be represented in binary using 4 bytes (or
2 words or 32 bits) is an int type object in Python.

The largest int object is
231 -1 = 2147483647

And the smallest is -2147483648



Playing with these notions

O

oTry

» Also try this

* Try this also




Integers of type long can be arbitrarily large (or small). In
other words, the type long provides infinite precision.

A long constant can be explicitly specified by appending
an L at the end of the integer. Try

x = 87bL
type(x)

Operations can be performed on a mix of long and int
objects; the type of the answer will be the larger type, i.e.,
long.



Numbers with decimal points are easily represented
in binary:

0.56 (in decimal) = 5/10 + 6/100

0.1011 (in binary) = 2+0/4 + 1/8 +1/16

However, not all real numbers (even rational
numbers) can be represented exactly by finite sums
of these fractions.

So always be wary of (small) errors in dealing with
floating point numbers. Try 0.1 + 0.2.



