
F E B 2 N D

Improving the efficiency of
primality testing

Quit the loop when compositeness is detected

 As soon as we discover that n is composite, we are
done and we should quit the loop and produce
output.

 While this does not improve the worst case
efficiency of the program, it does improve the typical
case.

 We’ll see two ways of doing this.

The break statement

 The break statements forces the program to exit out of
the smallest enclosing while-loop (or for-loop).

Example:

n = 10
while n < 20:

if n % 7 == 0:
break

n = n + 1
print n

Python code (Version 3)

import math
number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
factorBound = math.sqrt(n)
while(factor <= factorBound):

if(number % factor == 0):
isPrime = False
break

factor = factor + 1

if(isPrime):
print number, "is prime“

else:
print number, “is composite”

A simple way to time Python programs

 The time module contains a bunch of functions that

help us time code fragments.

 Calling time.time() returns the time elapsed (usually

in seconds) since some epoch (maybe Jan 1st, 1970).

 Call time.time() twice, once before and once after the

code fragment and take the difference.

Another approach

 We want to stay in the loop while

n <= factorBound (there are more factors to consider)

AND

isPrime == True (we have not yet found a factor)

 We can express this using the boolean operator and
in Python.

Python code (Version 3)

import math
number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
factorBound = math.sqrt(n)
while(factor <= factorBound) and (isPrime):

if(number % factor == 0):
isPrime = False

factor = factor + 1

if(isPrime):
print number, "is prime“

else:
print number, “is composite”

Python boolean operators

A B A and B

True True True

True False False

False True False

False False False

• and, or, and not are the three Python boolean

operators

•A and B is true only when both A and B are

true.

Examples: play with these

 (x <= 10) and (x > 4)

 (x < 4) and (x > 10)

 (x < 10) and True

 (x >= 0) and False

The or operator

A B A or B

True True True

True False True

False True True

False False False

A or B is true when A is true or B is true (or

both).

Examples: play with these

 (x <= 10) or (x > 4)

 (x < 4) or (x > 10)

 (x < 10) or True

 (x >= 0) or False

The not operator

A not A

True False

False True

Examples:
• not (x < 10)

• not (x == 10)

• not (x >= -10)

