
F E B 2 N D

Improving the efficiency of
primality testing

Quit the loop when compositeness is detected

 As soon as we discover that n is composite, we are
done and we should quit the loop and produce
output.

 While this does not improve the worst case
efficiency of the program, it does improve the typical
case.

 We’ll see two ways of doing this.

The break statement

 The break statements forces the program to exit out of
the smallest enclosing while-loop (or for-loop).

Example:

n = 10
while n < 20:

if n % 7 == 0:
break

n = n + 1
print n

Python code (Version 3)

import math
number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
factorBound = math.sqrt(n)
while(factor <= factorBound):

if(number % factor == 0):
isPrime = False
break

factor = factor + 1

if(isPrime):
print number, "is prime“

else:
print number, “is composite”

A simple way to time Python programs

 The time module contains a bunch of functions that

help us time code fragments.

 Calling time.time() returns the time elapsed (usually

in seconds) since some epoch (maybe Jan 1st, 1970).

 Call time.time() twice, once before and once after the

code fragment and take the difference.

Another approach

 We want to stay in the loop while

n <= factorBound (there are more factors to consider)

AND

isPrime == True (we have not yet found a factor)

 We can express this using the boolean operator and
in Python.

Python code (Version 3)

import math
number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
factorBound = math.sqrt(n)
while(factor <= factorBound) and (isPrime):

if(number % factor == 0):
isPrime = False

factor = factor + 1

if(isPrime):
print number, "is prime“

else:
print number, “is composite”

Python boolean operators

A B A and B

True True True

True False False

False True False

False False False

• and, or, and not are the three Python boolean

operators

•A and B is true only when both A and B are

true.

Examples: play with these

 (x <= 10) and (x > 4)

 (x < 4) and (x > 10)

 (x < 10) and True

 (x >= 0) and False

The or operator

A B A or B

True True True

True False True

False True True

False False False

A or B is true when A is true or B is true (or

both).

Examples: play with these

 (x <= 10) or (x > 4)

 (x < 4) or (x > 10)

 (x < 10) or True

 (x >= 0) or False

The not operator

A not A

True False

False True

Examples:
• not (x < 10)

• not (x == 10)

• not (x >= -10)

