Improving the efficiency of
primality testing

O




As soon as we discover that n is composite, we are

done and we should quit the loop and produce
output.

While this does not improve the worst case

efficiency of the program, it does improve the typical
case.

We'll see two ways of doing this.



The break statement

O

» The break statements forces the program to exit out of
the smallest enclosing while-loop (or for-loop).

Example:




import math
number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
factorBound = math.sqrt(n)
while(factor <= factorBound):
if(number % factor == 0):
isPrime = False
break
factor = factor + 1

if(isPrime):

print number, "is prime"
else:

print number, “is composite”



The time module contains a bunch of functions that
help us time code fragments.

Calling time.time() returns the time elapsed (usually
in seconds) since some epoch (maybe Jan 15, 1970).

Call time.time() twice, once before and once after the
code fragment and take the difference.



We want to stay in the loop while

n <= factorBound (there are more factors to consider)
AND
isPrime == True (we have not yet found a factor)

We can express this using the boolean operator and
in Python.



import math
number = int(raw_input("Enter a positive integer: "))

factor = 2
isPrime = True
factorBound = math.sqrt(n)
while(factor <= factorBound) and (isPrime):
if(hnumber % factor == 0):
isPrime = False
factor = factor + 1

if(isPrime):

print number, "is prime"
else:

print number, "is composite”



Python boolean operators

O

* and, or, and not are the three Python boolean
operators

*A and B is true only when both A and B are

true.
I N

True True True
True False False
False True False
False False False




Examples: play with these

O




The or operator

O

A or B is true when A is true or B is true (or
both).

I N
True True True
True False True
False True True

False False False




Examples: play with these

O




The not operator

True False

False True

Examples:
* not (x < 10)

* not (x == 10)

* not (x >=-10)




