
F E B 2 5 T H

Final thoughts on functions

Ordering functions in your code

 Will the following code work? Here the function is
defined after the main program that is calling it.
print foo()
def foo():

return “hello”

 Will this work? Here functions are defined before the
main program. But, foo2() is called before it is defined
by foo1.
def foo1():

return foo2()
def foo2():

return “hello”
print foo1()

How does Python process code with functions?

def foo1():
return foo2()

def foo2():
return “hello”

print foo1()

1. Pythons starts scanning the code from the beginning of the
file.

2. It notes down names of functions as it encounters their
definitions. Note that the functions are not executed at this
time.

3. It reaches the first executable statement (print foo1()) and
since foo1 is known to Python, control is transferred to
foo1.

4. In foo1, Python encounters a call to foo2. Function foo2 is
also known to Python and so control is transferred to foo2.

Moral of this example?

 Define all functions before the main program.

 And then don’t worry about the order in which the
functions themselves are defined.

Scope of a variable

 The scope of a variable refers to the “where” and
“when” a variable is available for use.

 Things were simple when we did not have functions.

 If we only had a main program: the scope of a
variable extends from the point where the variable is
first defined till the end of the program.

 In Python the scope of a variable can be dynamic.

Example of dynamic scope

x = raw_input()

if x:

y = "hello"

print y

 If the input is a non-empty string, then the scope of
variable y starts at Line 3. Otherwise, the scope of y
is empty, i.e., y is undefined.

Scope of variables inside functions

 Parameters and variables defined inside a function
are “local” to that function.

def foo():

var1 = “hello”

return var1 + var1

main program

print foo()

if var1 == “hellohello”:

print foo()

var1 is a variable that is local to
foo(). It comes into existence
when the first line of foo() is

executed and it “dies” when we
exit the function.

var1 is not defined and this
usage will cause an error.

Function parameters are also local

def foo(x):

var1 = “hello”

return var1 + x

main program

print foo(“bye”)

if x == “hellohello”:

print foo()

The variable x is undefined
here because the parameter x
lives only for the duration of

the function

Mental model: version 1

1. Python creates a dictionary of variable names when it
starts evaluating the main program. It uses this
dictionary to insert, look up, and update variable
names.

2. When the function foo is executed, a new dictionary of
variable names, specific to foo is created.

3. First the parameter x is inserted into this dictionary.
Then variable var1 is inserted.

4. Whenever we access a variable inside foo, foo’s
dictionary is looked up.

5. When the execution of foo is over, foo’s dictionary is
destroyed.

Global variables

 The mental model 1.0 explains why variables defined
inside a function cannot be used in the main
program.

 What about variables defined in the main program?
Can they be used inside a function?

def foo(x):

var1 = "hello"

return var1 + x + y

y = "good"

print foo("bye")

y is a global variable that is
defined in the main program, but
can be used in the function that is

called after it is defined.

Mental model: version 1.1

 Here is a “more correct” version of item (4)

Whenever we access a variable inside foo, foo’s

dictionary is looked up. If a variable is not found in
foo’s dictionary, then Python looks up the dictionary

of the main (calling) program.

 This allows a function access to “global” variables.

Local variables override global variables

def foo(x):
y = "hello"
return x + y

y = "good"
print foo("bye")
print y

 This mechanism also gives local variables precedence.

 In the above example, the variable y is found in foo’s
dictionary and that is the variable that is accessed in foo.

y is a global variable

This is a different, local y.
During the function, all

mention of y refers to this
local y.

Explicit global variables

def foo(x):

global y

y = "hello"

return x + y

y = "good"

print foo("bye")

Print y

 global is a Python keyword.

 If it were not for the global y statement, the variable y being
mentioned inside foo would have been defined in foo’s
dictionary and would be local to foo.

We are now explicitly declaring that the
y we want to access inside foo() is the

global variable y

WARNING!!

 I would discourage the use of global variables, both
implicit and explicit.

 Communication between functions or between the
main program and a function should be explicit –
via parameters/arguments and returned values.

