All about functions

O

This function takes the barrier distance n as an argument, simulates
the random walk until it hits the barrier (n or -n), and returns the
length of the random walk

def randomWalk(n):
location = O # tracks the location of the person

length = O # tracks the length of the random walk

Loop terminates when the location reaches n or -n
while abs(location) I= n:
step = random.randint(0, 1) #returns O or 1, each with prob. 1/2
if step == O:
step = -1
location = location + step
length = length + 1

return length

Notes about this function

O

» The first line of the function:

e aEOnWalk(n)
e T

» The body of the function is indented.

» It is as though n is input to the function.

» A function can have one or more arguments

» The last line of the function is usually a return:
return length

n = input("Enter a positive integer: ")
print randomWalk(n)

randomWalk(n) is a call to the function randomWalk
providing it the number n that the user as input as an
argument.

In order to execute the print statement, the function call
randomWalk(n) needs to be executed first.

This means that “control” is transferred to the function and
we start executing the function starting with its first line.

The value that the function returns essentially replaces the
function call.

n = input("Enter a positive integer: ")

count = O # tracks the number of times the walk is repeated
sum = O # sum of the lengths of the walk; needed for average
while count < 100:

sum = sum + randomWalk(n)

count = count + 1

print float(sum)/100

This function repeats a random walk with barrier n as many times
as specified by the argument numRepititions and returns the length
of the walk, averaged over all the repititions

def manyRandomWalks(n, numRepititions):
count = O # tracks the number of times the walk is repeated
sum = O # sum of the lengths of the walk; needed for average

Repeats the random walk as many times as specified by humRepititions
while count < numRepitions:

sum = sum + randomWalk(n)

count = count + 1

return float(sum)/100

n = input("Enter a positive integer: ")
print manyRandomWalks(n, 100)

The function call needs to supply arguments in the correct
order, i.e., in the order specified in the function definition.

Names in the function call have nothing to do with names
in the function definition. We could have written
m = input("Enter a positive integer: ")
print manyRandomWalks(m, 100)
And the value of m and the value 100 would be used for n and
numRepititions in the function.

Trying this out for different barrier values

O

112.86
376.4
827.6
1628.04
2570.6
3594.2
4616.14
6035.6
8596.58
10948.58

Length of random walk

Definition:
def manyRandomWalks(n, numRepititions):

return float(sum)/100

The first line of the function definition is called the function
header. The rest of the function is called the function body.

The names n and numRepititions in the function header are
called parameters of the function.

Call to this function:

print manyRandomWalks(m, 100)
The expressions m and 100 are called function arguments.

Arguments in a function call could be complicated
expressions that will be evaluated to a value first
before being sent in to the function.

Example: manyRandomWalks(80/x, y + 1)

In fact, arguments could be expressions involving
calls to other functions.

Example: manyRandomWalks(int(math.sqrt(x)), y + 1)

One way in which Python matches arguments to parameters is by
reading them left to right and matching 15t argument to 15t parameter,
ond argument to 274 parameter, etc.

This is called the positional style of parameter passing.

So

manyRandomWalks(10, 100)
and
manyRandomWalks(100, 10)

will return very different values.

In this way of parameter passing the number of arguments and the
number of parameters also have to exactly match.

You can avoid matching by position by using
keyword arguments in the function call.

Example: manyRandomWalks(humRepititions = 200, n = 20)

Here numRepititions and n are function
parameters.

Since the actual parameters are explicitly being
provided values in the function call, the matching
of arguments to parameters is no longer positional.

The above function call is identical to the call
manyRandomWalks(n = 20, numRepititions = 200)

There is a way to define default values of parameters.
Example: def manyRandomWalks(n, numRepititions = 100)

This function can now be called with one or two
arguments and in different styles.

Examples: Try these out

manyRandomWalks(10)
(The default value of 100 us used for numRepititions; 10 is used for n)

manyRandomWalks(40, 150)
(40 is used for n, 150 for numRepititions)

def test(x = 3,y = 100, z = 200):
return X -y + z

Examples of function calls:
test(10) (10 is used for x; default values 100 for y and 200 for
z)
test(10, 20) (10 is used for x, 20 for y; default value 200 for z)
test(z = 35) (default values 3 for x, 100 for y; 35 for z)
test(10, z = 35) (10 for x, default value 100 fory, 35 for z)

test(z = 50, 10, 12) (Error: positional arguments come first,
then keyword arguments)

Functions don’t have to explicitly return values. For
example:

def printGreeting(name):
print "Hello", name, "how are you?"
How would you call such a function?
Example:
printGreeting("Michelle")
What would happen if you executed?
x = printGreeting("Michelle")

