
F E B  2 1 S T

All about functions



The function randomWalk

# This function takes the barrier distance n as an argument, simulates
# the random walk until it hits the barrier (n or -n), and returns the
# length of the random walk

def randomWalk( n ):
location = 0 # tracks the location of the person
length = 0 # tracks the length of the random walk

# Loop terminates when the location reaches n or -n
while abs(location) != n:

step = random.randint(0, 1) #returns 0 or 1, each with prob. 1/2
if step == 0:

step = -1
location = location + step
length = length + 1

return length



Notes about this function

 The first line of the function:

def randomWalk( n )

 The body of the function is indented.

 It is as though n is input to the function.

 A function can have one or more arguments

 The last line of the function is usually a return:

return  length

Python keyword
function name argument list 



The rest of the program

n = input("Enter a positive integer: ")

print randomWalk(n)

 randomWalk(n) is a call to the function randomWalk 
providing it the number n that the user as input as an 
argument.

 In order to execute the print statement, the function call 
randomWalk(n) needs to be executed first.

 This means that “control” is transferred to the function and 
we start executing the function starting with its first line.

 The value that the function returns essentially replaces the 
function call.



Averaging over 100 simulations

n = input("Enter a positive integer: ")

count = 0 # tracks the number of times the walk is repeated

sum = 0 # sum of the lengths of the walk; needed for average

while count < 100:

sum = sum + randomWalk(n)

count = count + 1

print float(sum)/100



Making another function

# This function repeats a random walk with barrier n as many times

# as specified by the argument numRepititions and returns the length

# of the walk, averaged over all the repititions

def manyRandomWalks(n, numRepititions):

count = 0 # tracks the number of times the walk is repeated

sum = 0 # sum of the lengths of the walk; needed for average

# Repeats the random walk as many times as specified by numRepititions

while count < numRepitions:

sum = sum + randomWalk(n)

count = count + 1

return float(sum)/100



The rest of the program

n = input("Enter a positive integer: ")
print manyRandomWalks(n, 100)

 The function call needs to supply arguments in the correct 
order, i.e., in the order specified in the function definition.

 Names in the function call have nothing to do with names 
in the function definition. We could have written 

m = input("Enter a positive integer: ")

print manyRandomWalks(m, 100)

And the value of m and the value 100 would be used for n and 
numRepititions in the function.



Trying this out for different barrier values

m = 10 # tracks the value of the barrier

# m travels through 10, 20, ..., 100 in this loop and we compute and print the

# average walk length for each m

while m <= 100:

print manyRandomWalks(m, 100)

m = m + 10



Sample output 

112.86
376.4
827.6
1628.04
2570.6
3594.2
4616.14
6035.6
8596.58
10948.58

112.86
376.4

827.6

1628.04

2570.6

3594.2

4616.14

6035.6

8596.58

10948.58

1 2 3 4 5 6 7 8 9 10

Length of random walk



The manyRandomWalks functions

 Definition:
def manyRandomWalks(n, numRepititions):

…
…    
return float(sum)/100

 The first line of the function definition is called the function 
header. The rest of the function is called the function body. 

 The names n and numRepititions in the function header are 
called parameters of the function.

 Call to this function:

print manyRandomWalks(m, 100)

 The expressions m and 100 are called function arguments.



More on the manyRandomWalks function

 Arguments in a function call could be complicated 
expressions that will be evaluated to a value first 
before being sent in to the function.

Example: manyRandomWalks(80/x, y + 1)

 In fact, arguments could be expressions involving 

calls to other functions.

Example: manyRandomWalks(int(math.sqrt(x)), y + 1) 



More on the randomWalks function

 One way in which Python matches arguments to parameters is by 
reading them left to right and matching 1st argument to 1st parameter, 
2nd argument to 2nd parameter, etc.

 This is called the positional style of parameter passing.

 So
manyRandomWalks(10, 100)

and 
manyRandomWalks(100, 10)

will return very different values.

 In this way of parameter passing the number of arguments and the 
number of parameters also have to exactly match.



Keyword arguments

 You can avoid matching by position by using 
keyword arguments in the function call.

 Example: manyRandomWalks(numRepititions = 200, n = 20)

 Here numRepititions and n are function 

parameters.

 Since the actual parameters are explicitly being 
provided values in the function call, the matching 
of arguments to parameters is no longer positional.

 The above function call is identical to the call 
manyRandomWalks(n = 20, numRepititions = 200)



Keyword parameters

 There is a way to define default values of parameters.

 Example: def manyRandomWalks(n, numRepititions = 100)

 This function can now be called with one or two 
arguments and in different styles.

 Examples: Try these out

 manyRandomWalks(10)  

(The default value of 100 us used for numRepititions; 10 is used for n)

 manyRandomWalks(40, 150)

(40 is used for n, 150 for numRepititions)



Another example

def test(x = 3, y = 100, z = 200):
return x - y + z

Examples of function calls:
1. test(10) (10 is used for x; default values 100 for y and 200 for 

z)

2. test(10, 20) (10 is used for x, 20 for y; default value 200 for z)

3. test(z = 35) (default values 3 for x, 100 for y; 35 for z)

4. test(10, z = 35) (10 for x, default value 100 for y, 35 for z)

5. test(z = 50, 10, 12) (Error: positional arguments come first, 
then keyword arguments)



Things that functions return

 Functions don’t have to explicitly return values. For 
example:

def printGreeting(name):

print “Hello”, name, “how are you?”

 How would you call such a function?

Example:

printGreeting(“Michelle”)

 What would happen if you executed?

x = printGreeting(“Michelle”)


