
F E B 1 6 T H

Random Walks and Defining
Functions

If we take a random walk, will we go places?

 Problem: Simulate a random walk in which a
person starts of at point 0 and at each step randomly
picks a direction (left or right) and moves 1 step in
that direction.

 Take a positive integer n and terminate the
simulation when the walk reaches n or –n.

 Report the average number of steps it took for the
walk to terminate.

 Do this for various n and plot the results to get a
sense of how rapidly the walk terminates, as a
function of n.

Taking a single random step

import random

Version 1. This program starts off a person at 0 and moves

her one step to the left or right, at random.

location = 0

step = random.randint(0, 1) # returns 0 or 1, each with prob. 1/2

if step == 0:

step = -1

location = location + step

print location

Simulating the random walk

import random

Version 2. This program starts off a person at 0 and moves

her left or right, at random one step at a time until she reaches

the "barrier" at n or - n.

n = input("Enter a positive integer: ")

location = 0

Loop terminates when the location reaches n or -n

while abs(location) != n:

step = random.randint(0, 1) # returns 0 or 1, each with prob. 1/2

if step == 0:

step = -1

location = location + step

print location

Counting the length of the random walk

import random

Version 3. This program starts off a person at 0 and moves
her left or right, at random one step at a time until she reaches
the "barrier" at n or - n. It outputs the length of the walk.

n = input("Enter a positive integer: ")
location = 0 # tracks the location of the person
length = 0 # tracks the length of the random walk

Loop terminates when the location reaches n or -n
while abs(location) != n:

step = random.randint(0, 1) #returns 0 or 1, each with prob. 1/2
if step == 0:

step = -1
location = location + step
length = length + 1

print length

What more is there to do?

There are two more things we need to do to solve our
problem:

1. Find the average length of a walk, for a particular value
n of the barrier. We have to decide how many runs to
take the average over.

2. Repeat this for various values of n and try to
understand the trend.

We need a loop around our current code to do (1) and
another loop around that code to do (2).

Defining a function

 Things have become complicated enough that we
need to reorganize our code using functions.

 The plan is to define a function called randomWalk
that takes n (the barrier distance) as an argument
and returns the length of a simulated random walk.

 We can then just call this function from the main
part of the program.

The function randomWalk

This function takes the barrier distance n as an argument, simulates
the random walk until it hits the barrier (n or -n), and returns the
length of the random walk

def randomWalk(n):
location = 0 # tracks the location of the person
length = 0 # tracks the length of the random walk

Loop terminates when the location reaches n or -n
while abs(location) != n:

step = random.randint(0, 1) #returns 0 or 1, each with prob. 1/2
if step == 0:

step = -1
location = location + step
length = length + 1

return length

Notes about this function

 The first line of the function:

def randomWalk(n)

 The body of the function is indented.

 It is as though n is input to the function.

 A function can have one or more arguments

 The last line of the function is usually a return:

return length

Python keyword
function name argument list

The rest of the program

n = input("Enter a positive integer: ")

print randomWalk(n)

 randomWalk(n) is a call to the function randomWalk
providing it the number n that the user as input as an
argument.

 In order to execute the print statement, the function call
randomWalk(n) needs to be executed first.

 This means that “control” is transferred to the function and
we start executing the function starting with its first line.

 The value that the function returns essentially replaces the
function call.

Averaging over 100 simulations

n = input("Enter a positive integer: ")

count = 0 # tracks the number of times the walk is repeated

sum = 0 # sum of the lengths of the walk; needed for average

while count < 100:

sum = sum + randomWalk(n)

count = count + 1

print float(sum)/100

Making another function

This function repeats a random walk with barrier n as many times

as specified by the argument numRepititions and returns the length

of the walk, averaged over all the repititions

def manyRandomWalks(n, numRepititions):

count = 0 # tracks the number of times the walk is repeated

sum = 0 # sum of the lengths of the walk; needed for average

Repeats the random walk as many times as specified by numRepititions

while count < numRepitions:

sum = sum + randomWalk(n)

count = count + 1

return float(sum)/100

The rest of the program

n = input("Enter a positive integer: ")
print manyRandomWalks(n, 100)

 The function call needs to supply arguments in the correct
order, i.e., in the order specified in the function definition.

 Names in the function call have nothing to do with names
in the function definition. We could have written

m = input("Enter a positive integer: ")

print manyRandomWalks(m, 100)

And the value of m and the value 100 would be used for n and
numRepititions in the function.

Trying this out for different barrier values

m = 10 # tracks the value of the barrier

m travels through 10, 20, ..., 100 in this loop and we compute and print the

average walk length for each m

while m <= 100:

print manyRandomWalks(m, 100)

m = m + 10

Sample output

112.86
376.4
827.6
1628.04
2570.6
3594.2
4616.14
6035.6
8596.58
10948.58

112.86
376.4

827.6

1628.04

2570.6

3594.2

4616.14

6035.6

8596.58

10948.58

1 2 3 4 5 6 7 8 9 10

Length of random walk

